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SCIENTIFIC ACTIVISM AND RESTRAINT: THE
INTERPLAY OF STATISTICS, JUDGMENT, AND
PROCEDURE IN ENVIRONMENTAL LAW

David E. Adelman*

INTRODUCTION

Americans have a love-hate relationship with science.! We re-
ceive minute-by-minute updates of the Dow Jones Industrial Average
and the NASDAQ), read news accounts of recent medical studies on
the risks from diseases, and track scientific reports estimating the an-
nual increase in average global temperature from greenhouse gases.
All of these numbers involve elaborate forms of statistical analysis and
testing, and we rely to a great extent on the good faith and presumed
objectivity of the scientists and economists involved to ensure that the
numbers are accurate. As the recent accounting scandals and space
shuttle disaster in the United States have demonstrated, however, de-
fining statistical measures and ensuring accuracy are far from trivial
tasks—even in areas many people assume are readily amenable to

*  Associate Professor, James E. Rogers College of Law, University of Arizona;
B.A, Reed College, 1988; Ph.D., Stanford University, 1993; J.D., Stanford Law School,
1996. For helpful comments, the author thanks Graeme Austin, John Barton, Ellen
Bublick, Robert Glennon, Stephen Goldberg, Greg Mandel, Toni Massaro, Jamie
Ratner, Carol Rose, Dalia Tsuk, Elliot Weiss, and David Wexler; special thanks to
David Kaye, Mark Kelman, and Ted Schneyer.

1 Recent surveys suggest that many Americans have conflicting attitudes towards
science. A 2002 report published by the National Science Foundation (NSF) found
that “[iln general, Americans express highly favorable attitudes toward [science and
technology].” NAT’L SCIENCE BOARD, SCIENCE AND ENGINEERING INDICATORS—2002, at
7-12 (2002), available at http://www.nsf.gov/sbe/srs/seind02/pdfstart.htm. At the
same time, many Americans believe that “people would do better by living a simpler
life without so much technology” (44%) and that “technological discoveries will even-
tually destroy the Earth” (about 30%). Id. at 7-13. Even more striking, approximately
50% of the people surveyed agreed that “[w]e depend too much on science and not
enough on faith.” /d. Moreover, for hotly contested technologies, such as genetic
engineering and nuclear power, public confidence in science is much lower. Id. at 7-
16 to 7-17, 7-21.
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meaningful quantification.? These kinds of failures have led Ameri-
cans to question the reliability and value of such scientific methods
and to question the role of science in society more generally.?
Similar schisms exist over how science is used in setting environ-
mental policy. For most critics of environmental regulation, broad re-
liance on science is viewed as progress towards increased rationality
and objectivity.* For many environmentalists, however, the presumed
authority of science has engendered far greater concern and opposi-
tion. Environmentalists argue that science is too uncertain to resolve
regulatory choices, that it is inaccessible to the general public, and

2 See Kurt Eichenwald, Pushing Accounting Rules to the Edge of the Envelope, N.Y.
TiMes, Dec. 31, 2002, at C1 (commenting that “quarterly financial reports are far from
the precise things that investors dream them to be”); Michael H. Granof & Stephen A.
Zeft, Generally Accepted Accounting Abuses, N.Y. TiMEs, June 28, 2002, at A27 (observing
that despite what investors might like to believe, “accounting rules are hardly objec-
tive[;] [t]hey are open to interpretation—and, of course, manipulation—and there is
often more than one reasonable way to measure expenses or revenues’); John
Schwartz, Computer Program That Analyzed Shuttle Damage Was Misused, Engineer Says,
N.Y. TiMes, Aug. 25, 2003, at A9 (concluding that a computer program “helped NASA
mistakenly decide that the shuttle Columbia had not been deeply harmed”); John
Schwartz & Matthew L. Wald, Echoes of Challenger: Shuitle Panel Considers Longstanding
Flaws in NASA's System, N.Y. TiMes, Apr. 13, 2003, at A27 (noting that “the seemingly
hard numbers of the Boeing analysis {of the impact of falling debris] appeared at the
time to trump the gut feelings of the engineers” and may have contributed to the loss
of the space shuttle).

3 NaT’L ScIENCE BOARD., supra note 1, at 7-16 to 7-17, 7-21 to 7-23 (noting that
public support for space exploration dropped dramatically following the Challenger
space shuttle accident and that recent negative publicity regarding genetic engineer-
ing has contributed to its diminishing level of public acceptance).

4  See, e.g., BJorN LoMBORG, THE SKEPTICAL ENVIRONMENTALIST: MEASURING THE
REAL STATE OF THE WORLD 348 (2001) (urging the need for a “strong regulation sys-
tem” based on sound science); Stephen Breyer, The Interdependence of Science and Law,
280 Science 537, 537-38 (1998) (observing that “there is an increasingly important
need for law to reflect sound science”); Frank B. Cross, The Subtle Vices Behind Environ-
mental Values, 8 DUKE EnvTL. L. & PoL’y F. 151, 151 (1997) (“Reliance on science is
broadly consistent with liberty and democracy. These values of the scientific method
are far more valid than some of the values underlying public risk perceptions.”); John
D. Graham, Legislative Approaches to Achieving More Protection Against Risk at Less Cost,
1997 U. ChH1. LEcaL F. 13, 41-43 (discussing, as current Administrator of the Office of
Information and Regulatory Affairs at the Office of Management and Budget, the
merits of a sound science approach to environmental regulation); William Reilly, Tak-
ing Aim Toward 2000: Rethinking The Nation’s Environmental Agenda, 21 ENvTL. L. 1359,
1362 (1991) (commenting, as the former Administrator of the Environmental Protec-
tion Agency, that “sound science is our most reliable anchor in a turbulent sea of
environmental policy and regulation”).
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that it is often used to mask questions of social values.> Underlying
much of this concern is a general skepticism of scientific expertise
and opposition to the antidemocratic overtones of delegating deci-
sionmaking authority to a scientific elite. Yet, in spite of these con-
flicts, science continues to dominate environmental decisionmaking.
The “best available science,” for example, is the established standard
for regulatory decisions under many environmental statutes,® and sci-
ence is used in political and legal battles to justify, defend, and chal-
lenge environmental laws. Moreover, scientific methods, such as cost-
benefit analysis and risk assessment, have become the common met-
rics of environmental regulation.

The controversy over the role of science in environmental poli-
cymaking is at base about the proper scope of scientific discretion.
The debate first ignited around risk assessment methods used to de-
rive regulatory standards for industrial chemicals.” Risk assessment
created a furor because uncertainties in risk estimates are often very

5 See, e.g., Adam Babich, Too Much Science in Environmental Law, 28 Corum. J.
EnvrtL. L. 119, 126 (2003) (arguing that “current scientific theories about risk make a
poor starting point for regulatory standard setting”); Devra Lee Davis, The “Shoigun
Wedding” of Science and Law: Risk Assessment and fudicial Review, 10 CoLum. J. EnvTL. L.
67 (1985) (describing the misuse and limitations of risk assessment in the context of
Jjudicial review); Sheila Jasanoff & Dorothy Nelkin, Science, Technology, and the Limits of
Judicial Competence, 214 Science 1211, 1213 (1981) (commenting that scientific uncer-
tainty can mistakenly “lead both scientists and regulators to recommend inaction”
and often may “encourage litigants to translate questions of social value into technical
discourse”); Howard Latin, Good Science, Bad Regulation, and Toxic Risk Assessment, 5
YALE ]. on REc. 89, 90 (1988) (“challeng[ing] the conventional view that scientific
perspectives should dominate the risk-assessment process”); Thémas O. McGarity,
Substantive and Procedural Discretion in Administrative Resolution of Science Policy Questions:
Regulating Carcinogens in EPA and OSHA, 67 Geo. L]J. 729, 781 (1979) (arguing that
federal regulation of carcinogens cannot be dictated by science, but must instead be
resolved using a results-oriented approach); Wendy E. Wagner, Congress, Science, and
Environmental Policy, 1999 U. ILL. L. Rev. 181, 181 (asserting that “Congress has put
too much emphasis on scientific data—operating under the mistaken belief that sci-
ence, alone, can provide the solutions to environmental problems”); Wendy E. Wag-
ner, The Science Charade in Toxic Risk Regulation, 95 CoLum. L. Rev. 1613, 1629 (1995)
[hereinafter Wagner, Toxic Risk Regulation] (arguing that “[algency scientists and bu-
reaucrats engage in a ‘science charade’ by failing first to identify the major interstices
left by science in the standard-setting process and second to reveal the policy choices
they made to fill each trans-scientific gap”).

6  See Endangered Species Act of 1973, 16 U.S.C. § 1533(b) (1) (A) (2000) (“best
scientific and commercial data available”); Clean Water Act of 1977, 33 U.S.C.
§ 1314(a) (1) (“reflecting the latest scientific knowledge”); Safe Drinking Water Act,
42 U.S.C. § 300g-1(b)(3) (A) (“best available, peer-reviewed science”); Clean Air Act,
42 U.S.C. § 7408(a)(2) (“reflect the latest scientific knowledge”).

7 See supra note 5.
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large at the low exposure levels most relevant to regulatory standards.
Opposition also was heightened because, unlike many science-policy
disputes, the problem is easily understood: The harm from most toxic
chemicals at low exposure levels falls below the detection limits of ex-
isting testing methods. As a result, scientists must make judgments, or
educated guesses, about the behavior of a chemical’s toxicity at low
exposure levels to fill this gap in the data. Environmentalists have
cried foul on the ground that such judgments are matters of social
value that lie outside the jurisdiction of scientific expertise, and ob-
jected to risk methods because they transform a question of policy
into obscure technical details.® Regulatory critics are also hostile to-
wards broad scientific discretion, but they view risk assessment meth-
ods as the solution, not the problem.® Their ire is directed at fuzzy
qualitative science, which they describe pejoratively as “junk science”
and consider to be presumptively suspect. For regulatory critics, risk
assessment methods are by definition legitimate because they are
quantitative and inductive.!© '

The positions on both poles of this debate are one-sided. Most
significantly, they fail to recognize that good science encompasses log-
ically deductive and inductive methods, as well as broad scientific val-
ues, such as simplicity, breadth, and consistency.!! In other words,
science involves a mix of qualitative judgments (based on broad prin-
ciples) and quantitative data. This Article deviates from the standard
debate insofar as it focuses on the underlying scientific methods them-

8 See Jasanoff & Nelkin, supra note 5, at 1213; Wagner, Toxic Risk Regulation,
supra note 5, at 1629.

9 See generally Risks, Costs, AND Lives SAvED: GETTING BETTER RESULTS FROM REG-
uLATION (Robert W. Hahn ed., 1996) (criticizing the current system where regulatory
policy is set based on political pragmatism and highlighting key issues underlying risk
assessment); Graham, supra note 4, at 14 (calling for Congress to pass a statute requir-
ing the Executive Office of the President to create an “explicit, rigorous process of
priority setting” among and within the various risk protection agencies).

10 This general veneration of risk assessment methods should not be read to im-
ply that regulatory critics are not critical of certain approaches to risk assessment,
such as the use of overly conservative assumptions. See, e.g., Albert L. Nichols & Rich-
ard J. Zeckhauser, The Perils of Prudence: How Conservative Risk Assessments Distort Regula-
tion, 10 REGuLATION 13, 17-19 (Nov./Dec. 1986) (describing how regulatory policy is
distorted by the use of conservative risk assessments); W. Kip Viscusi, Regulating the
Regulators, 63 U. CH1. L. Rev. 1423, 1437 (1996) (explaining how agencies use con-
servative risk estimates that “institutionalize an irrational form of economic
behavior”).

11 Thomas S. Kuhn considered both rigorous methods, which he referred to as
normal science, and “idiosyncratic factors” based on these scientific values to be es-
sential ingredients of scientific progress. THoMmAs S. KuHn, THE EssenTiaL TENSION
329-31 (1977).
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selves, not purported misapplications of them. The Article examines
the role of scientific discretion in environmental law by evaluating
how scientific judgment is shaped by scientific methods—particularly
statistical techniques. Three stages of scientific judgment will be ex-
amined: (1) reducing experimental information to quantitative re-
sults; (2) drawing inferences from discrete scientific studies; and (3)
integrating the results of multiple experimental studies for purposes
of setting environmental policies.

Statistical methods are of central importance to scientific judg-
ment and to this Article. I will argue that statistics should be under-
stood as a formal system for structuring how expert judgment is
integrated into scientific determinations. Two theories of statistical
inference will be described: “frequentism,” which is based on methods
for controlling and minimizing error rates in statistical models; and
“Bayesianism,” which is founded on a theorem for combining experi-
mental results and scientific judgments that satisfies certain principles
of logical coherence.!'? The two theories differ in their basic analytical
approach. Frequentism uses objective standards of “statistical signifi-
cance” to ensure that statistical methods stringently test scientific hy-
potheses, whereas Bayesian methods derive the probability that a
hypothesis is true based on subjective scientific judgments and the
available data. These differences are pivotal because they result in di-
vergent approaches to conducting and interpreting statistical analyses
and because they generate results that often differ substantially.!3
The important elements to appreciate initially are the basic contrasts
between the two theories: frequentism is defined by measures of statis-
tical significance, objective frequencies, and rigorous testing; Baye-
sianism is based upon direct probabilities, subjective judgments, and
logical coherence. These differences cause the two methods to incor-
porate expert judgments into scientific assessments very differently.

Describing and explaining scientific methods, as the preceding
paragraph evidences, presents its own- set of challenges. I hope to
minimize these impediments by drawing on parallels that exist be-
tween legal and scientific methods (some of which are interesting in
their own right). The basic premise of this approach is that scientific
and judicial judgment bear many similarities in how they are struc-

12 See Ian HACKING, AN INTRODUCTION TO PROBABILITY AND InDUCTIVE Locic
127-28, 171-73, 190 (2001); M.S. Bartett, Probability and Chance in the Theory of Statis-
tics, 141 Proc. RovaL Soc’y Lonpon 518, 528-29 (1933); see also infra Part IV.A.

13 The more common frequentist significance testing employs statistical model
error rates to evaluate whether a scientific hypothesis is refuted by observed data.
Bayesian analyses, in contrast, use experimental data to estimate the degree of belief,
often referred to as epistemic probability, a hypothesis warrants.
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tured. Important parallels exist at three levels: the interpretive theo-
ries that delimit judicial review and scientific judgment, the allocation
of burdens of proof in judicial and scientific judgments, and the regu-
latory models and methodological rules that structure judicial and sci-
entific judgments, respectively. These parallel features map directly
onto the three stages of scientific judgment described above—inter-
pretive principles onto stage one, burdens of proof onto stage two,
and procedural rules and regulatory models onto stage three. The
similarities between the legal and scientific frameworks will be drawn
upon at each stage, as demonstrated below.

Stage 1. Interpretive theories of judicial review mirror those used
in science. Judicial review is practiced according to interpretive prin-
ciples that range from strict formalism to antiformalism.!* Stated sim-
ply, formalism limits judges to the plain language of a statute or the
Constitution; antiformalism denies that such a plain meaning can be
discerned in most cases and presumes judges will invoke principles
beyond the specific statutory or constitutional provisions in ques-
tion.!® Scientific positivism and relativism parallel these two branches
of legal thought. In its most basic form, positivism views scientific
facts as speaking for themselves and scientific methods merely as

means for collecting and interpreting the plain meaning of data.!®
~ Relativism rejects this passive model of science, holding instead that
scientific facts are neither univocal nor free-floating—where judges
require external principles to resolve the meaning of a statutory provi-
sion, scientists require theories to make sense of experimental data.!”
Judges and scientists, in this light, are both subject to being labeled
activists and condemned for either their formalist or antiformalist
methods. For example, environmentalists’ objections to risk methods
are in essence objections to a form of “scientific activism” in which
scientists (improperly) extrapolate beyond a strict reading of the lim-
ited facts available. The legal and scientific debates both raise chal-
lenging questions about the proper scope of expert judgment and
discretion.

14 Examples of strict formalism include texualism and originalism; examples of
antiformalism include legal pragmatism and rights based theories. See JoHn HART
Ery, DEMOcCRracy aND DisTrRUsT 1-3 (1980); Paul Brest, The Fundamental Rights Contro-
versy: The Essential Contradictions of Normative Constitutional Scholarship, 90 YaLE L.J.
1063, 1064-65 (1981); Thomas C. Grey, Judicial Review and Legal Pragmatism, 38 WAKE
ForesT L. Rev. 473, 478 (2003).

15 See Brest, supra note 14, at 1064-65.

16  See infra Part 11.B.

17  See infra Part ILB.
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Stage 2. Burdens of proof in environmental law and science often
overlap because environmental standards are generally based on sci-
entific evidence. This connection is borne out by the fact that the
controversy over regulatory burdens of proof has often focused on sta-
tistics. The other important element of the debate is the Precaution-
ary Principle, which environmentalists have long used to argue that
regulated industries should bear the burden of proving that their
products and activities are safe.’® Environmentalists object to tradi-
tional statistical methods (i.e., frequentist) because they improperly
place the scientific burden of proof on proponents of environmental
regulation by implicitly starting with a baseline assumption that no
harm exists.!® Environmentalists consequently consider the bias of
frequentist methods to be a central impediment to their decades-long
effort to reform methods of scientific inference for purposes of envi-
ronmental standard setting. These objections raise important ques-
tions about how statistical methods are used by scientists and the
relationship between standards of statistical significance and legal bur-
dens of persuasion.

Stage 3. It is a simple truism that legal rules and scientific meth-
ods shape how scientific standards are established in environmental
law. More significant, however, is the observation that the two central
models found in law and science are structurally similar—in both con-
texts, one model is procedurally oriented and the other expertise
based. For legal academics, risk assessment methods are the exampie
of choice in the contest between the two models. For example, Su-
preme Court Justice Stephen Breyer and professor Wendy Wagner
have both used toxics risk assessment to illuminate the virtues of each
approach.2® Breyer argues for an expert model based on establishing
a politically insulated scientific elite within the government to resolve
difficult scientific problems.?! Wagner advocates a procedural ap-
proach that is designed to ensure that matters of scientific fact and
environmental policy are made transparent and clearly distinguished
from each other.?2 The central difference between their proposals is
that where Wagner seeks to separate the science from the policy,
Breyer lumps expert judgment together with empirical observations.

Scientists also have an obvious interest in controlling how scien-
tific judgments are made and used in environmental policymaking.

18  See infra Part 11l (describing the Precautionary Principle).

19 See infra Part II1.

20 STEPHEN BREYER, BREAKING THE Vicious CIRCLE: TOwARD ErrecTIVE Risk REGU-
LATION 42-50 (1993); Wagner, Toxic Risk Regulation, supra note 5, at 1613-17.

21 BrEYER, supra note 20, at 59-61, 80-81.

22 Wagner, Toxic Risk Regulation, supra note 5, at 1701-03, 1711-20.
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The focus of the scientific debate, however, is on statistical methods—
one side propounding a frequentist approach, the other a Bayesian.?3
Frequentists occupy the proceduralist camp with their objective test-
ing methods and attention to analytical transparency.?* Bayesians, in
the other, embrace an expert model that integrates scientific judg-
ments directly into statistical analyses.?> Among scientists, climate
change research has become a flash point for this methodological
standoff. For example, Professor Stephen Schneider, a prominent cli-
mate scientist and environmentalist, has argued tirelessly on behalf of
Bayesian methods because he believes they ensure that the judgments
of scientific experts are adequately considered by policymakers.2¢
Schneider’s campaign has met with significant opposition. Frequen-
tist critics claim that Bayesian methods will further politicize environ-
mental science because they incorporate subjective judgments, which
naturally reflect a scientist’s personal biases.?” Policymakers will, as a
result, have to contend with a plethora of Bayesian estimates that vary
from scientist to scientist, rather than a single frequentist analysis of
the data. The choice between frequentist and Bayesian methods
therefore implicates the debate over regulatory models used in envi-
ronmental policymaking, and vice versa.

This Article examines the role -of scientific discretion in environ-
mental law and describes the interplay between scientific judgment,

23 See, e.g., CoLIN HowsoN & PETER URBACH, SCIENTIFIC REASONING: THE BAYESIAN
ApPrOACH (1989) (explaining the analytical underpinnings of Bayesian methods and
arguing that it is a superior method); DEBoraH G. Mavo, ERROR AND THE GROWTH OF
ExpERIMENTAL KNOWLEDGE (1996) (providing a standard book on the analytical un-
derpinnings of frequentist methods); Brian Dennis, Should Ecologists Become Bayesians?,
6 EcoLocicaL AppLicaTiONs 1095 (1996) (analyzing the weaknesses and limitations of
Bayesian methods); Aaron M. Ellison, An Introduction to Bayesian Inference for Ecological
Research and Environmental Decision-Making, 6 EcoLoGICAL AppLicaTIONS 1036 (1996)
(describing the virtues of Bayesian analysis relative to traditional frequentist meth-
ods); Jim Giles, When Doubt is a Sure Thing, 418 NATURE 476 (2002) (reporting on the
dispute over Bayesian and frequentist methods among climate scientists); David
Malakoff, Bayes Offers a ‘New’ Way to Make Sense of Numbers, 286 Science 1460 (1999)
(reporting on the rise of Bayesian methods by scientists); Stephen H. Schneider, What
Is Dangerous’ Climate Change?, 411 NATURE 17 (2001) (advocating the use of Bayesian
methods in climate change policy); Lara J. Wolfson et al., Bayesian Environmental Policy
Decisions: Two Case Studies, 6 EcCOLOGICAL APPLICATIONS 1056 (1996) (demonstrating
how Bayesian methods can be used in environmental policymaking).

24 Mavo, supra note 23, at 10.

25  See supra note 12 and accompanying text.

26  See Giles, supra note 23, at 476-77; Schneider, supra note 23, at 18.

27 See Giles, supra note 23, at 477-78. A scientist from the private sector, for
example, will presumably derive very different Bayesian estimates of pollutant levels in
a stream than a scientist from an environmental group.
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statistics, and procedure in environmental policy. Part I of the Article
sets the stage with a brief introduction to statistics. The core sections
of the Article, Parts II through IV, follow the three-stage framework
described above. Part II discusses the legal and scientific debates over
quantitative methods in environmental policy and challenges the
dominant theories of science found in legal scholarship. I reject the
prevailing theories in favor of an experimentally grounded approach
that acknowledges the central role of qualitative judgments in science
and the difficult balancing that is required to protect the integrity of
science while ensuring transparency and political accountability. Part
IIT addresses the debate over burdens of proof in environmental law,
and uses several rationales for the Precautionary Principle to evaluate
common misconceptions and concerns about the use of frequentist
methods in environmental science. I show that statistical tests are
more flexible than most people appreciate and propose a solution to
environmentalists’ concerns—*“equivalence testing”—that reverses the
benign-until-proven-guilty presumption of traditional frequentist
methods.?® Finally, Part IV evaluates the competing virtues of Baye-
sian and frequentist methods for structuring how scientific judgments
are made and analyzes their parallels with the legal models Breyer and
Wagner propose. Both statistical theories are found to have practical
limitations and to present important interpretive challenges. I con-
clude by describing an alternative to the two legal models that allevi-
ates the shortcomings of the statistical methods by integrating them
with standard legal procedures. This approach has two additional
benefits: it enhances the range of options available to guide scientific
judgment in environmental policy, and it promotes a deeper apprecia-
tion on the part of lawyers and policymakers for the limits and
strengths of scientific methods.

I. INTRODUCTION TO BAYESIAN AND FREQUENTIST METHODS OF
STATISTICAL INFERENCE

Statistics is often mistakenly viewed as a collection of related tech-
niques that lack any substantive content.?® Statistics in fact consists of

28 SeeRoger L. Berger & Jason C. Hsu,. Bioequivalence Trials, Intersection-Union Tests
and Equivalence Confidence Sets, 11 STAT. Sci. 283, 283-84 (1996); Graham B. McBride,
Equivalence Tests Can Enhance Environmental Science Management, 41 AustL. & N.Z. J.
StaT. 19, 20 (1999).

29 Statistics is no more a collection of descriptive techniques void of theoretical
content than legal procedures are independent of substantive objectives. Yet, as early
as the Progressive Era, statisticians sought to separate their technical work from its
potential political implications. Se¢ THEODORE M. PORTER, THE RISE OF STATISTICAL
THINKING 1820-1900, at 23-39 (1986). “Partly as a defensive move, and partly to reas-
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certain mathematical theorems and models of scientific inference that
are premised on substantive beliefs about nature.3° It also functions
in two distinct modes. First, statistics encompasses a collection of
mathematical techniques (e.g., means, medians, probability func-
tions) that are used to analyze observed propensities in experimental
systems, such as the likelihood of rolling double sixes with a set of
dice.?' In this mode, statistics is used to evaluate the results of multi-
ple observations, such as calculating the mean concentration of a pol-
lutant in a river from multiple test sites. Second, statistics is used to
make probability estimates for scientific inference, which are most
commonly associated with traditional methods for determining

sure interested political leaders that their support of statistics would not embarrass
them, the statist[icians] adopted the position that they were concerned exclusively
with facts.” Id. at 35. Neither the logic nor theory of statistics, however, supported
statisticians’ denials that statistical methods entailed substantive assumptions or val-
ues. Id.

30 Randall Collins, Statistics Versus Words, 2 Soc. THEORY 329, 331 (1984). As one

commentator has put it:
[A] U principles of theory evaluation [i.e., experimental testing] make some
substantive assumptions about the structure of the world we live in and
about us as thinking, sentient beings. The difference between procedural
and substantive methodological rules is thus entirely a matter of degree and
of context. And as soon as we acknowledge that point, it becomes clear that
the cogency of any methodological principle is, at least in part, hostage to
the vicissitudes of our future interactions with the natural world. But that is
just another way of saying that methodologies and theories of knowledge are
precisely that, viz., theories.

Larry LAUDAN, BEvyOND PositivisM anp ReraTivisim 171 (1996).

31 The simple roll of a fair die involves a stochastic system that is governed purely
by chance or random process. In complex real world settings, however, the concept
of chance often reflects both our state of knowledge and a characteristic of reality. See
Joun EArRMAN, Baves or Bust? 54 (1992). Chance can arise when we do not, and
perhaps cannot as a practical or epistemological matter, know the starting conditions
or sequence of actions that caused an event. If while hiking I am hit by a falling tree
branch, at least two independent chains of causation precipitated the event: the ac-
tions that led me to be hiking in the particular place at the time the branch fell and
the events that led to the collapse of the branch. In this example, two independent
causal chains (my decision to go hiking and the branch failure) converged to cause
the chance event. Importantly, the system of interactions in this example is not com-
pletely random; in fact, much predictive order exists, for example, in the tree
branch’s failure, even if not all of the necessary information is available. If it were
possible to reconstruct each of these causal chains, one could fully explain the causes
of the event. Accordingly, chance is not limited to “the absence of causality,” but
often incorporates our ignorance of causality based on what we choose, or are able, to
observe or test. Collins, supra note 30, at 332, 350.
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whether an experimental result is statistically significant.3 In this sec-
ond mode, statistical methods are used to determine whether or not
certain data support a particular scientific hypothesis, such as a theory
about the health risks from specific airborne pollutants; they do not
function as a direct summary of the trends observed in the data, as in
a median value or experimental uncertainty estimate.

As competing statistical theories, frequentist and Bayesian meth-
ods differ in several import respects. First, frequentist methods span
both the data summary and scientific inference modes, whereas Baye-
sian methods are limited to scientific inference. Second, while both
theories are derived from the same basic axioms,33 they adopt diver-
gent approaches to defining probability and deriving statistical infer-
ences. Frequentists define probability objectively as the “longrun
frequencies” in a population.?* The frequency, for example, that sam-
ples from a body of water exceed a regulatory limit or the incidence
rate of a genetic defect in a population are representative of such
properties.?> Bayesians, in contrast, define probability as the level of
confidence an individual has about an event or thing based on their
subjective judgment.3® Bayesian methods, for instance, could be used
to combine expert judgments and observational data to determine the
“conditional probability” that air emissions from a power plant are

32  See IaN Hacking, THE EMERGENGE OF ProBaBiLITY 1, 11-16 (1975) (explaining
that probability is, on the one hand “statistical, concerning itself with stochastic laws
of chance processes,” but on the other hand, “is epistemological, dedicated to assess-
ing reasonable degrees of belief in propositions quite devoid of statistical
background”). '

33 HACKING, supra note 12, at 135. Three central axioms, often referred to as
Kolmogoroff’s axioms, form the basic logical framework of all probability theory. The
framework is structured such that for an event E on a trial of kind K, the probability
of E, P(E), obeys the following axioms: (1) 0< P(E)< I; (2) P(2) = 1, where (2is a sure
outcome; and (3) P(EuF) = P(E) + P(F), where E and F are mutually exclusive (i.e., do
not overlap)—this axiom generalizes as PZE,) = ZP(E,) if each E, is mutually exclu-
sive of the others. The expression P(EUF) is the probability of events E and F both
occurring. IaN HackiNG, Locic OF StaTisTicAL INFERENCE 18-19 (1965). Acceptance
of these axioms is virtually universal and no attempt will be made to justify them here.

34 See Hacking, supra note 12, at 144-45, 190-91; HACKING, supra note 33, at 2.

35 In the first case, the body of water contains a specific concentration (i.e., long-
run frequency) of the chemical. In the second case, a general population exists, all
humans, that has a (presumably) stable subpopulation with the genetic defect, and
the long-run frequency is the subpopulation’s size divided by the total population’s
size. A frequentist would take multiple samples of the water and study sample human
populations to obtain estimates of these long-run frequencies, and use these data as a
basis for statistical inference.

36 HACKING, supra note 12, at 131-32, 140-44.
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harmful to human health.3? Third, frequentist probabilities do not
vary from person to person, whereas Bayesian probabilities may—even
if based on the same data. Scientists could, for example, derive very
different Bayesian estimates for the air pollutlon levels in a city using
the same monitoring data.

Bayesian and frequentist methods of statistical inference are
mathematically distinct in the following respect: the Bayesian “per-
spective fixes on one fundamental logical property of the probability
rules—Bayes’s [theorem]. The frequency perspective fixes on an-
other fundamental logical property of the probability rules—laws of
large numbers.”?® In the former, Bayes’s theorem operates as a logi-
cal algorithm for incorporating evidence into a probability estimate.3?
For example, if you believe at the start of the season that your favorite
baseball team has a 30% chance of winning the World Series, Bayes’s
theorem provides a logically consistent means of revising this estimate
during the course of the baseball season as your team'’s record evolves.
In the latter, the approximations made possible by the mathematical
law of large numbers are integral to the derivation of frequentist statis-
tical testing methods and to their analytic power even when the availa-
ble data are limited.*® The central point to grasp here is that Bayesian

37 “Conditional probability” signifies that the probability estimate is conditioned
(i.e., based on or relative to) an initial judgment about the system being studied and
the available data. Davip Howig, INTERPRETING ProBaBILITY 30-31 (2002). Bayesians
focus on the data, not statistical samples of abstract populations. Bayesians begin with
a mathematical estimate of the statistical results, referred to as a “prior probability,”
and use observational data to refine the starting predictions and to quantify directly
the probability (e.g., 60%) of the violation occurring. /Id.

38 See HackING, supra note 12, at 190. The probability rules referred to here are
the basic axioms of probability theory, from which Bayes’s theorem is derived directly,
and the law of large numbers refers to a critical mathematical simplification (valid for
large samples) that was instrumental in deriving the normal distribution.

39 Asa number of legal academics have urged, Bayes’s theorem could be used to
assist juries in weighing and integrating the evidence in a case. See, e.g., MicHAEL O.
FINKELSTEIN, QUANTITATIVE METHODS IN Law 87-98, 103-04, 289-310 (1978);
PrOBABILITY AND INFERENCE IN THE LAw oF EviDEnce (P. Tillers & E.D. Green eds.,
1988); David L. Faigman & A.]. Baglioni Jr., Bayes’ Theorem in the Trial Process: In-
structing Jurors on the Value of Statistical Evidence, 12 Law & Hum. BEHAv. 1, 16 (1988)
(asserting that “an expert’s Bayesian formulation will not overwhelm the average trier
of fact,” and courts should focus less on the potential of overwhelming the jury and
more on impressing the relevance of techniques). But see Ronald J. Allen & Brian
Leiter, Naturalized Epistemology and the Law of Evidence, 87 Va. L. Rev. 1491, 1493
(2001) (“employ[ing] the naturalized epistemology approach to criticize existing the-
ories of different evidentiary rules, including Bayesianism”).

40 HackiNg, supra note 12, at 190, 196-98.
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and frequentist methods are based on distinct mathematical theo-
rems, which dictate how they are applied.

The two statistical theories also reflect opposing philosophies for
scientific inference: Bayesian methods are inductive while frequentist
methods are hypothetical-deductive. Take the example of assessing
the likelihood of global warming during the next decade. A Bayesian
would use Bayes’s theorem to combine the available information, in-
cluding the judgments of scientific experts, and derive inductively the
probability that global warming will occur (e.g., it is 60% likely). A
frequentist, in contrast, would start with a “null hypothesis” that global
warming will not occur and then conduct an experiment to test
whether this null hypothesis is consistent with the collected data. If
the experimental data are inconsistent with the null hypothesis, the
result is simply characterized as “statistically significant.” Frequentist
methods consequently do not quantify directly the likelihood of
global warming; they function instead as a means for testing (i.e., falsi-
fying) hypotheses. The more rigorous the statistical testing, the
greater the confidence a scientist using frequentist methods will have
in a hypothesis if it withstands such testing.

The historical development of statistics sheds further light on the:
differences between the Bayesian and frequentist approaches and the
different roles statistical methods play in science. Statistics was used in
two distinct ways during its early development: (1) as a method for
combining experimental observations, and (2) as a means for drawing
scientific inferences.4! The theoretical unification of these roles took
about 150 years and involved the work of some of the most brilliant
mathematicians of this period.#?2 The discussion that follows begins by
describing work in the 1700s and early 1800s on the statistical analysis
of experimental observations and then shifts to the late 1800s and
early 1900s to consider the work of Sir Ronald Fisher and Sir Harold
Jeftreys on statistical inference. Their views embody critical elements
of frequentism and Bayesianism, respectively, and reveal how these
distinctive traditions differ.

Astronomers working before the mid-1700s did not combine
measurements, except where precisely replicated measurements were
averaged together.#® At the time, the virtue of obtaining multiple
measurements under a range of conditions was completely misunder-
stood—scientists believed that combining observations would cause

41 STEPHEN M. STIGLER, THE HisTORY OF StATISTICS: THE MEASUREMENT OF UNCER-
TAINTY BEFORE 1900, at 4 (1986).

42 Id.

43 Id. at 30.
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errors to multiply, not cancel.#* However by 1805, the Method of
Least Squares revealed that a data set’s arithmetic mean represented
“the center around which the results of observations arrange them-
selves, so that the deviations from that center are as small as possi-
ble.”5 The center of gravity identified by the mean value of multiple
observations emboldened scientists to combine measurements, but
did not allow experimental error to be estimated.*® Experimental er-
ror estimation had to wait for the derivation of the “normal distribu-
tion,” or “bellshaped curve,” which scientists recognized as modeling
observations for which experimental errors are random.*” Once this
connection was made, the normal distribution became the standard
mathematical model for calculating experimental error.8

Development of the normal distribution represented a turning
point in statistical theory. The archetype for a random, or stochastic,
system became a simple gas consisting of a large number of atoms
randomly interacting such that their individual velocities over time
are not causally connected.#® The conditions of this simple atomic
model—independent elements identically distributed—also define
these terms.> Two aspects of an atomistic model, and thus the nor-
mal distribution, are particularly distinctive and powerful. First, the
model provides a “zero point” against which to assess a system’s order
because the elemental components of an atomistic model are as-
sumed to be completely uncorrelated.?! Scientists realized that this
property is crucial, as it can be exploited to assess causal relations in

44 Id. at 4.

45 Id. at 14-15.

46 Id. at 61, 139-40. Interestingly, some astronomers resisted statistical methods
for calculating errors on the basis that it preempted their expertise in judging their
own measurements. Howik, supra note 37, at 19.

47 STIGLER, supra note 41, at 141-45.

48 Id. at 157-58.

49 Collins, supra note 30, at 334-35. Randomness can also be defined more for-
mally as (1) not being able to gamble a system; or (2) relative to an ideal computer,
any program sufficient to generate the sequence would be at least as long as the se-
quence. HACKING, supra note 12, at 145.

50 See HAckING, supra note 33, at 20-21; Collins, supra note 30, at 333-35. In this
context, “identically distributed” simply means that the velocities and magnitudes are
symmetric about the mean value for the system.

51 Causal connections between elements of a system exist along a continuum,
which ranges from fuil causal interdependence (e.g., carbon atoms in a diamond crys-
tal) to complete causal independence (e.g., helium atoms in a balloon). Model fre-
quency-type systems lie at the complete causal independence end of the scale, which
is, in effect, an “absolute zero” for causal relations within a system.
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experimental systems.5? For example, if a scientist wishes to deter-
mine whether a chemical is harmful, she employs an atomistic model
of her experimental conditions as a baseline against which to assess
whether the chemical has a discernible effect.’3 Second, the model is
accurately represented by two simple parameters, making it exception-
ally easy to interpret.5*

The synthesis of combining experimental observations and evalu-
ating experimental error established the basic mathematical founda-
tion for modern statistics. Calculating the error associated with
observations, however, was just the start. Scientists soon realized that
the normal distribution could be used to model a broad range of
physical and social systems.?> Social scientists were actually the first to
grasp the significance of these methods beyond their use in experi-
mental error analysis.’® At the time, statistical methods were em-
ployed to identify regularities in social statistics, culminating in the
use of the normal curve to construct an idealized “average man.”5?
Economists also used the new methods to fulfill their aspirations for a
“social mechanics” comparable to Newtonian mechanics in physics.>8
Statistical theory enabled them to translate a physical atomistic model
into an economic theory in which utility became as fundamental to
economic theory as energy was to theoretical physics.

52 Itis nevertheless essential to keep in mind that “a statistical model is not simply
a basis against which to test some other theory; it provides a model of the phenomena
itself.” Collins, supra note 30, at 348.

53 A corollary principle necessary for this (frequentist) approach to be valid is
that only causally connected relations are observed over repeated observations, or in
large systems, because causally unconnected relations average out (i.e., cancel). See
PORTER, supra note 29, at 97.

54 HACKING, supra note 33, at 72-73 (noting that the two parameters are the
mean, or average value, and variance of the distribution).

55 Because scientists through much of the nineteenth century believed that the
physical world was deterministic, it was decades before physical science began to use
statistics for purposes other than error analysis. Howig, supra note 37, at 41-42, 200.
According to this perspective, determinism obviated the need for probabilistic models
because the natural sciences would generate precise descriptions of natural phenom-
ena. Id.

56 See HowiE, supranote 37, at 37; PORTER, supra note 29, at 111-13 (noting it was
ultimately the regularity of social statistics that inspired physical scientists to adopt
statistical methods).

57  See STIGLER, supra note 41, at 169-71, 201, 215, 221.

58 See PORTER, supra note 29, at 257. By reifying an atomistic model of society,
their approach abstracted frequentist theory by treating individual people atomisti-
cally, that is, as analogues of atoms in a simple gas system, and by defining utility as an
analogue of energy in this simple physical model. See id. at 256-57 (noting that Edge-
worth referred to utility as the “invisible energy of pleasure”); see also Jonn M. KEYNES,
A TREATISE ON ProBaBILITY 249 (1921).
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The work of social scientists during the nineteenth century led to
more sophisticated techniques, such as statistical correlation and re-
gression, that transformed the experimental methods of the social sci-
ences and soon found their way back into the physical sciences.?®
These subsequent developments in statistics generalized the approach
taken in astronomy:

Observations and statistics agree in being quantities grouped about
a Mean; they differ, in that the Mean of observations is real, of statis-
tics is fictitious. The mean of observations is a cause, as it were the
source from which diverging errors emanate. The mean of statistics
is a description, a representative quantity which, if we must in prac-
tice put one quantity for many, minimizes the error unavoidably «t-
tending such practice . . . . In short observations are different
cop’es of one original; statistics are different originals affording one
“generic portrait.”60

The median height among a collection of people and mean con-
centration of an airborne chemical are representative of a statistical
generic portrait or summary. The rising importance of statistical
methods also exposed important differences in how probability was
interpreted, precipitating the permanent division in statistics between
the frequentist and Bayesian schools. Fisher’s and Jeffreys’s work and
advocacy enhanced the debate over the proper interpretation of
probability.

Ronald Fisher was instrumental in developing the formal meth-
ods for frequentist statistical inference and experimental design. Ac-
cording to Fisher, “science was a matter of random statistical
aggregates, and the data representative of a population.”®? Fisher’s
view of science was deeply informed by his work in Mendelian genet-
ics, which scientists have aptly characterized as nature’s “perfect gam-
bling machine.”®2 Population genetics became the central metaphor
of Fisher’s work: Just as a human population contains many genetic
subpopulations, so too is the universe made up of innumerable popu-
lations or classes of things, which experiments randomly “sample” to

59  See STIGLER, supra note 41, at 358-61.

60 Id. at 309.

61 HowiE, supra note 37, at 164.

62 Id. at 61 (“Mendelism was unique in involving a chance mechanism that gener-
ated with exact and fixed probability one of a set of clearly-defined outcomes. Ge-
netic probabilities could thus be treated as inherent to the world rather than reflecting
incomplete knowledge.”) (citing G.A. Barnard, Reply to S.L. Zakell, 4 StaT. Sc1. 258,
259-60 (1989)).
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determine their properties.®® For Fisher, statistical inference involved
obtaining a statistical sample of a population, such as sediment sam-
pling points in a river, from which the fixed (i.e., objective) frequen-
cies of the population were inferred.5* Fisher’s test for statistical
significance provides a measure of the fidelity between an experimen-
tal sample statistic, such as a mean sediment contaminant level, and
the corresponding parameter in the real world population, here the
mean sediment contaminant level of every point in the river.5> The
great strength of Fisher’s work was that his statistical tests were both
simple to apply and valid for even relatively small experimental
samples.

Harold Jeffreys was a physicist with an astonishing talent for de-
veloping mathematically tractable models for complex systems in geo-
physics, meteorology, and astrophysics.%¢ As in astronomy, Jeffreys’s
work was observational, not experimental (i.e., not based on carefully
controlled and replicated studies), “and the relevant data [were]
often scarce and of variable quality.”87 These constraints led Jeffreys
to integrate observations from diverse fields. “His inferences often
tied geological and archeological results to astronomical observations
and even considerations from atomic physics or the classical theory of
waves. A frequency interpretation was simply unavailable: such data
could not be regarded as from a specified [frequentist] population.”6?

As a result, Jeffreys viewed probability as a characteristic of imper-
fect knowledge and thus relative to the available information.%® The
nature of Jeffreys’s scientific work also made it natural for him to inte-
grate his scientific judgments with empirical observations. For Jef-
freys, Bayesian analysis provided the formal theoretical framework to

63 Id. at 63. Under this theory, the statistical frequencies measured in an experi-
ment do not represent the “credibility” of the result; they are the relative frequencies
of the sample. Id

64 Id. at 70, 74. Determining, for example, the average frequency, on a daily
basis, of rain in a specific region draws a sample from an essentially infinite popula-
tion consisting of days. Fisher’s work was particularly remarkable insofar as it allowed
scientists to infer general laws based on relatively small sample sizes. See id. at 71.

65 Id. at 63. Just as one would predict intuitively, the larger the sample size and
better controlled the experiment, the better the sample statistic will approximate the
parameter in the population being tested. Id. at 71.

66 See id. at 5, 82, 84.

67 Id. at 113

68 Id. at 169.

69 Seeid at 4, 8, 89. One of Jeffreys’s seminal discoveries was that the Earth’s core
is molten. In this context, it made no sense to determine the long-run probability
that this was true. Either it was or it was not molten—positing a hypothetical popula-
tion of Earths from which to draw samples would have been absurd. Id at 8.
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combine his scientific judgments with the available observational data
to make scientific inferences.

The differences in Fisher’s and Jeffreys’s approaches demonstrate
the close connection between substantive science and statistics.”°
Fisher began with a probabilistic, or stochastic, model of the universe
analogized from Mendelian population genetics. He deduced from
this model an objectivist approach to statistical inference based on
rigorous testing protocols, under which confidence in a hypothesis is
strengthened if it passes such tests.”! Jeffreys’s experience as a physi-
cist, in contrast, led him to Bayesian analysis, which provided a logi-
cally coherent means of combining expert judgment and diverse
empirical observations to derive conditional probability estimates for
his physical theories.”? The two approaches treat new information
very differently. For Fisher, new data reduce statistical error rates by
providing a larger sample that is more representative of the true pop-
ulation, and thus a stronger test for statistical significance. For Jef-
freys, new information does not reduce statistical error rates, it
alters—either up or down—one’s degree of belief (i.e., the
probability) that a hypothesis is true.

The work of Fisher and Jeffreys reveals how the frequentist and
Bayesian approaches to probability are premised on two distinct con-
ceptual foundations. Frequentism adopts a world view in which ab-
stract populations are the building blocks of the universe. Under this
framework, experimental science is simply a process of obtaining “ran-
dom samples from a population of fixed distribution,” much as one
might take multiple samples of a gumball machine to estimate the
relative abundance of the different flavors it contains.”® As Fisher’s
work suggests, this model of reality was generalized from his experi-
mental work in Mendelian genetics, not proven.’® Bayesians reject
Fisher’s unproven presumption that the world is divided into abstract
populations and opt instead for the logical coherence grounded in

70 The work of Fisher and Jeffreys also illustrates just how much “[e]ach interpre-
tation of probability . . . [is] suited to a particular sort of [scientific} inquiry.” Id. at 9.

71 Because Jeffreys viewed “populations” as “unobserved data,” he rejected
Fisher’s form of statistical inference because it enabled “a hypothesis that may be true
[to] be rejected because it has not predicted observable results that have not oc-
cured.” Id. at 155 (quoting H. JeFFrEYs, THEORY OF ProBaABILITY 357 (2d ed. 1948)).

72 Jeffreys’s Bayesian approach was pointedly criticized for creating a “wretched
hybrid” of objective frequencies and subjective judgment (i.e., data, experience, and
psychological factors) when what scientists wanted to compare were mathematical
models to objective data—in short, experimental observations must be separated
from scientific judgment. See id. at 161-62.

73 Id. at 37.

74 See id. at 107.
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Bayes’s theorem. Bayesians are not, however, able to avoid this meta-
physical uncertainty, as it re-enters their analysis in the form of the
scientific judgments on which Bayesian analyses are based. These
points are crucial to appreciating the relationship between probability
and judgment in the two theories. Probability and scientific judgment
are distinct for frequentists because they treat probability as an objec-
tive property that is used to justify scientific judgments. Probability
and scientific judgment are merged for Bayesians because they treat
probability as a subjective property that incorporates subjective judg-
ments directly into probability estimates. The two theories conse-
quently incorporate scientific judgments in very different ways.

II. SCIENTIFIC JUDGMENT AND QUANTIFICATION IN
ENVIRONMENTAL PoLICY

Environmentalists object to statistical methods for two central
reasons. First, statistical variables distort environmental policies by su-
perimposing overly simplistic generic portraits of complex
problems.” To give just one example, environmental risks of indus-
trial chemicals are often reduced to assessments of human carcinoge-
nicity, without any consideration of harms to wildlife, ecosystems, or
non-cancer human health risks.”¢ This type of distortion arises inexo-
rably from statistical quantification, which in all but the most trivial
systems sacrifices representation accuracy for analytic clarity and tract-
ability.”” Second, traditional frequentist methods of statistical infer-

75  See Laurence H. Tribe, Trial by Matkematics: Precision and Ritual in the Legal Pro-
cess, 84 Harv. L. Rev. 1329, 1372-76 (1971) [hereinafter Tribe, Trial by Mathematics];
Laurence H. Tribe, Ways Not to Think About Plastic Trees: New Foundations for Environ-
mental Law, 83 YaLE L.J. 1315, 1329-32 (1974) [hereinafter Tribe, Plastic Trees].

76 Critics also charge that simplifying assumptions, such as functional linearity
and continuity, are more misleading than enlightening and therefore should be criti-
cally re-evaluated. See Laurence H. Tribe, Policy Science: Analysis or Ideology, 2 PHIL. &
Pus. Arr. 66, 73-74, 87-88, 92-93 (1972); Tribe, Plastic Trees, supra note 75, at
1331-32. A great deal of attention also has been directed at the values implicit in
various simplifying assumptions in cost-benefit analysis, such as the use of economic
discounting and risk metrics in environmental policy. See Frank Ackerman & Lisa
Heinzerling, Pricing the Priceless: Cost-Benefit Analysis of Environmental Protection, 150 U.
Pa. L. Rev. 1553, 1578-81 (2002); Lisa Heinzerling, Regulatory Costs of Mythic Propor-
tions, 107 YALE L.J. 1981, 2060-64 (1998); Wagner, Toxic Risk Regulation, supra note 5,
at 1616. '

77 In addition to determining what factors a statistic should reflect (e.g., all risks
or some set of well known risks), scientists must determine (1) the level at which
information will be aggregated and (2) the scale used to quantify the data. The first
question raises an interpretive problem, namely, that “statistical uniformity [may be]
mostly superficial, attained only when one considers a great mass and smears together
the variety of the phenomena.” PORTER, supra note 29, at 183-84. A globally aver-
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ence are biased because they implicitly place the scientific burden of
proof on those seeking to demonstrate risks to the environment or
human health. Although these objections are distinct, statistical infer-
ence is dependent on quantification as a precondition for its applica-
tion. Methods of quantification (e.g., scaling or variable type) and
any underlying scientific theories frame all statistical analyses, making
statistical inference dependent on these methodological and theoreti-
cal judgments. This Part focuses on the uncertainties inherent in, and
approaches to, developing quantitative measures for statistical
analyses.

Environmental policy is riven by disputes between environmental-
ists and regulatory opponents over the use of quantitative methods—
although, neither is consistent in their critique.” For example, envi-
ronmental risks are typically formulated by critics of regulation as ob-
jective properties that can be readily aggregated for an entire
population, just as economists aggregate individual utilities. In oppo-
sition, environmentalists argue that such overly reductive approaches
to risk distort reality by disregarding localized conditions, such as iso-
lated areas of high risk that disproportionately affect certain commu-
nities, and by excluding important values commonly overlooked in
risk models.” Yet, many simplifying assumptions also are made in ar-

aged temperature, for example, actually obscures regional variability and limits the
range of causal relations that can be resolved. Statistical uniformity in such cases is an
artifact of the system'’s size, and is thus not accurately representative of the quantity
being analyzed. Id. at 184-85. Statistical scaling is determined either by the observa-
tion technique or by the nature of the hypothesis, such that some statistics fall into
strict categories while others extend along a continuum. For example, survival or
death from lead exposure is categorical (an individual is either dead or alive, not
somewhere in between) whereas cognitive losses from lead exposure occur along a
continuum ranging from extreme to nominal impairment. In this simple example, a
scientist would therefore use different statistical scales depending on whether she was
concerned about mortality or cognitive harm to children.

78 Justice Stephen Breyer’s book, Breaking the Vicious Circle, illustrates this point
perfectly. In chapter one, he bases his analysis on a great deal of cost-benefit data,
which he largely takes as uncontested; in chapter two, he describes in detail the
problems and limitations of existing risk assessment methods, which he describes as
highly uncertain and subject to numerous simplifying assumptions. BREYER, supra
note 20, at 3-51. However, as professor Lisa Heinzerling has argued persuasively, the
cost-benefit methods Breyer relies on in his first chapter are equally susceptible to the
sorts of uncertainties and simplifying assumptions Breyer takes pains to elucidate in
the second chapter of his book. Heinzerling, supra note 76, at 2064—69.

79  See supra note 76. Risk models, for example, assume that risk varies continu-
ously and linearly, such that a marginal increase in a low-level risk is treated as
equivalent to a marginal increase in a high-level risk. For some people, risks above a
certain level will be intolerable and they would not weigh marginal increases in risk
above this level equally with risks below it. This is analogous to, though the inverse of,
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eas of environmental science that environmentalists use to justify reg-
ulatory programs.8® Climate change models, for example, ignore
localized conditions to enable statistical data to be interpretable and
predictions to be made.8! Each side of the debate thus has its favored
areas of science where quantification, despite numerous simplifying
assumptions, remains relatively uncontested, as well as its favorite ex-
amples of “pseudo-science” permeated by “trans-scientific” judgments
(i.e., technical questions that cannot be fully resolved by science).82
Predictably, the line between presumptively legitimate methods and
so-called junk science is drawn such that the interests of the particular
advocate are supported by good science.

Science and trans-science cannot be distinguished based on the
presence or absence of qualitative judgments—at most, this is a ques-
tion of degree rather than kind. Indeed, if science were defined by
such analytical purity, virtually nothing could be characterized as sci-
entific. As discussed below, philosophers such as Sir Karl Popper ex-
posed the fallacy that science can be reduced to either logically
inductive or deductive methods.®® Yet, conservative proponents of the
natural sciences frequently describe them in a purely positivist mode

economists’ claims that the marginal value of money diminishes with a person’s
wealth.

80 Environmental assessments use broad based indices, such as global carrying
capacity and growth limits, that are subject to numerous judgments and uncertainties.
Moreover, some of the most celebrated environmental books have used quantitative
estimates to dramatize the impacts of population growth and the limits of environ-
mental sustainability. See, e.g., PAuL R. EruLICH, THE PopuLaTiON BomB (rev. ed.
1978) (documenting the tensions between population growth and environmental un-
sustainability); DoNELLA H. MEADOWS ET AL., BEYOND THE LiMITs (1992) (updating the
Limits to Growth analysis and making an effort to describe a sustainable future);
DoneLLa H. MEADOWS ET AL., THE Limrts To GRowTH (1972) (using a systems based
approach to model human impacts on the global environment and to assess the limits
of human and economic growth); see also WorLD WiLDLIFE FUND, LiviNG PLANET RE-
PORT (2002), available at http://www.wwif.org.uk/filelibrary/pdf/livingplanet2002.pdf
(giving a contemporary analysis of global impacts using a variety of quantitative
indices).

81  See supra note 77.

82 See KENNETH R. FosTER & PETER W. HUBER, JUDGING SCIENCE 55-58 (1997)
(“[Trans-science] concerns questions that are scientific in Popper’s sense but are not
resolvable in practice.”); Wagner, Toxic Risk Regulation, supra note 5, at 1619
nn.21-22. The term “trans-science” was first coined by the physicist Alvin Weinberg
to mean “questions which can be asked of science and yet which cannot be answered by
science.” Alvin M. Weinberg, Science and Trans-Science, 10 MINERvA 209, 209 (1972).

83 See infra Part I1.B; RicHaArD H. GaskiNs, BURDENS OF PROOF IN MODERN Dis-
COURSE 152-53 (1992); Naomi Oreskes et al., Verification, Validation, and Confirmation
of Numerical Models in the Earth Sciences, 263 ScIENCE 641, 642 (1994); Weinberg, supra
note 82, at 209.
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that portrays science as purely a matter of logic.%% Similarly, it is this
mechanical picture of science that many environmentalists critical of
quantitative methods have in mind when they challenge the pur-
ported bias of scientific findings.85 Both perspectives are misleading.
Selectively rejecting scientific methods based on a positivist caricature
of science is a strawman tactic used by regulatory critics to discredit
certain types of science, and by environmentalists to bind scientific
experts to a rigid model of science. All areas of science necessarily
draw on a variety of quantitative and qualitative methods, making sci-
entific positivism little more than a malleable fiction that is wielded
effectively in an offensive mode but has little constructive value.

At the other extreme, the relativists’ claim that science is suffused
by subjective judgments that negate the separation of scientific facts
and values is equally problematic.86 This perspective ignores impor-
tant low-level methodological strategies, such as using independent
and diverse experimental methods to test scientific hypotheses, that
prevent or limit the intrusion of values into science. A bipolar debate
over the proper role of science in environmental policy therefore
misses a great deal of what gives science its normative authority. Too
few people in the legal community adequately appreciate that much
useful science falls between the positivist and relativist poles. The sec-
tions that follow describe typical approaches to scientific uncertainty
and quantification within environmental law, present the formal phil-
osophical arguments on which these approaches are based, and iden-
tify a middle ground for understanding how quantitative methods
evolve and succeed in the face of broader theoretical uncertainties.
In this light, scientific authority derives from its prospective power to

84 See, e.g., SHEILA JasaNOFF, THE FIFTH BRANCH: SCIENCE ADVISORS AS POLICYMAK-
ERs 1 (1990) (describing how commentators perceive science advisors as “critical in-
telligence” in a regulatory system that is otherwise too vulnerable to politics);
Graham, supranote 4, at 41-42 (describing sound science as “objective, weight-of-the-
evidence evaluation that is peer reviewed”); Dorothy Nelkin, The Political Impact of
Technical Expertise, 5 Soc. Stup. Sci. 35, 36 (1975) (describing the idealized role of
technical expertise in policymaking). This “scientist” perspective dates back to the
Theodore Roosevelt conservation era, which was based on using trained impartial
experts, drawing on objective scientific facts, to make resource management deci-
sions. SAMUEL P. Havs, CONSERVATION AND THE GOSPEL OF EFFICIENCY: THE PROGRES-
SIVE CONSERVATION MoOVEMENT 1890-1920, at 2-3 (1959).

85 See, e.g., PROTECTING PuBLIC HEALTH & THE ENVIRONMENT 71 (Carolyn Raffen-
sperger & Joel Tickner eds., 1999) (articulating a simple positivist view of science).

86 As one critic has put it, the relativist “move from the alleged failure of [a sam-
pling of] methodological rules to the presumption that all methodologies are hope-
less is to engage in just the sort of naive inductivism about which [they are] otherwise
so abusive.” LAUDAN, supra note 30, at 104.
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generate accepted truths, as opposed to some claim to analytical de-
terminacy, and treating science in purely relativist terms (i.e., it is all
political) threatens the potential growth and success of environmental
science.

A.  The Debate Within the Legal Community over Quantification

The rhetorical power and limitations inherent in statistical meth-
ods of quantification clearly warrant the legal community’s atten-
tion.8” The basic problem, according to environmentalists, is that the
process of identifying and naming categories can in fact never be
wholly neutral (e.g., defining risk solely in terms of human cancer
deaths), as all facts embody certain substantive beliefs and values.88
The mixing of facts and values negates the neutrality of science be-
cause simplifying assumptions employed to construct quantitative
measures obscure certain “perspectives and possibilities,” such as hotly
contested environmental values like protecting endangered species or
pristine wilderness.?® Further, this blending of science and policy in-
exorably leads scientists to inject their own ideological predilections
into their analysis (e.g., industry scientists make self-serving assump-

87 These distortions are perhaps more potent than one might initially assume
when applied in a legal or policy setting: The use of statistical methods, for example
in risk assessment, is necessarily based on a host of simplifying assumptions that
amount to a highly simplified and ultimately inaccurate version of reality. Neverthe-
less, because of the perceived solidity and utility of a numerical formulation, we con-
flate this caricature with conditions in the real world, disregarding the acknowledged
limitations of the theory employed. Se¢ MARk KELMaN, A GUIDE To CriTicAaL LEGAL
Stupies 291 (1987). Thus, once a policymaker has risk estimates before her, they are
treated as gospel in the absence of competing estimates or a sophisticated under-
standing of the underlying methods. In so doing, policymakers transform a highly
simplified theory, or hypothesis, about the world into a method of obtaining informa-
tion that is descriptive of it; theory seamlessly becomes an established method for
observing facts.

88  See Tribe, supra note 76, at 75-77.

89 Seeid.; Ackerman & Heinzerling, supra note 76, at 1578-81; Heinzerling, supra
note 76, at 2060-64; Tribe, Plastic Trees, supra note 75, at 1319. A common example is
the so-called “dwarfing of soft variables,” which occurs when unquantified factors (soft
variables) are discounted, or ignored, relative to quantified factors in an analysis. See
Heinzerling, supra note 76, at 2060-61; Tribe, Trial by Mathematics, supra note 75, at
1361-65. If, for instance, an agency quantifies certain risks associated with a proposal,
such as human health risks from cancer, but neglects others, such as ecological im-
pacts, the quantified risks will be given disproportionate weight in setting policy. For
some of these commentators, the cryptic nature of quantitative methods aggravates
these deficiencies because “numbers disguise the numbers’ true meaning and inhibit
useful and informed discussion about the matters in question.” Heinzerling, supra
note 76, at 2042.
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tions that chemicals are harmless at very low exposure levels).?® Simi-
lar to the legal debates over formalist approaches to judicial review,
the objectivity of science is challenged because of such individual bi-
ases or decisionmakers’ interest in cloaking questions of policy in
technical jargon.®!

The favored example of policy masquerading as science in envi-
ronmental law is chemical risk assessment. In her article, The Science
Charade in Toxic Risk Regulation, Professor Wendy Wagner identifies
many so-called trans-scientific judgments made when interpreting the
results of animal studies for purposes of determining a chemical’s
toxicity:92

Extrapolating [the high-dose] results to potential effects of low

levels of the substance on humans then presents the next two trans-

scientific junctures, which are often collapsed into one. First. .. an
extrapolatory model must be selected that will predict low-dose ef-
fects on animals based solely on high-dose data. Although there are
several scientifically plausible extrapolatory models . . . the choice of
one model over another cannot be resolved by science and thus
must be determined by policy factors. This policy choice will have
significant implications for the level ultimately chosen as adequate

to protect public health. Second . . . since the similarities between

animals and humans with regard to their sensitivity to carcinogens

90 See Tribe, Plastic Trees, supra note 75, at 1332. Many industry scientists, for
example, subscribe to the view that toxic chemicals often have a threshold below
which they have no effect. Most environmentalists reject this theory as unproven and
likely unprovable given existing methods. Both sides of this debate arguably make
judgments about the underlying science that are informed by their individual
prejudices and interests.

91  See generally BREYER, supra note 20, at 47-49 (explaining that scientists from
government regulatory agencies can frame uncertain scientific evidence to fit political
agendas); Wagner, Toxic Risk Regulation, supra note 5, at 1628-31 (describing how
government agency scientists fill “trans-scientific gaps” in the standard setting process
by making policy choices and by failing to reveal those choices). The same kinds of
allegations have been made regarding the role of judges in reviewing statutes or the
Constitution:

It’s because everybody down deep knows [that judges can get away with in-
serting their own value judgments into opinions] that few come right out
and argue for the judge’s own values as a source of constitutional judgment.
Instead the search purports to be objective and value-neutral; the reference
is to something “out there” waiting to be discovered, whether it be natural
law or some supposed value consensus of historical America, today’s
America, or the America that is yet to be.
Evy, supra note 14, at 48.

92 Wagner defines trans-science broadly to include “significant splits in the scien-
tific community that are identified by scientists as major controversies over ‘scientific
judgment.’” Wagner, Toxic Risk Regulation, supra note 5, at 1620 n.22.
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are largely unknown and incapable of being studied directly, a pol-
icy choice must again be made.%3

Justice Stephen Breyer makes many similar observations, al-
though from a different perspective, in his book, Breaking the Vicious
Circle:

The more frequently used animal studies are often more uncertain
[than human studies]. The investigator applies a high dose of a
supposed carcinogen to the animals; if they develop a higher than
average number of tumors, the analyst tries to extrapolate backward
to low doses in humans. What assumptions shall be made in doing
so? What extrapolation model should be used? Risk analysts tend
to use, for both animal and epidemiological studies, a linear model,
which extrapolates backward on a straight line. . . . Critics argue that
to use such mathematical models is like saying “If ten thousand men
will drown in ten thousand feet of water, then one man will drown
in one foot of water,” or “If dropping ten bottles off a ten-foot wall
breaks all ten, then dropping ten bottles off a one-foot wall will
break one.”*

Both authors raise compelling points about the intermixing of
science and policy.%®> Yet, they come to different conclusions about
the problems with federal policymaking. Breyer considers the “disci-
plinary canon” to be often far too weighted towards “erring on the
safe side,”@® whereas Wagner claims that trends in chemical regulation
reveal that the system is biased against less studied chemicals and
often neglects chemicals posing greater potential risks.®?

Despite their mutual concern about administrative efficiency and
scientific accuracy, Breyer and Wagner propose conflicting solutions
for ensuring that regulatory decisionmaking is effective when the
available science is indeterminate.®® Consistent with his faith in scien-
tific expertise, Breyer recommends establishing a distinct civil service
career path in health and environmental policy and calls for the “crea-

93 Id. at 1626.

94 BREYER, supra note 20, at 44 (citations omitted). The critics Breyer refers to
are extrapolating linearly down to zero.

95 I question whether the analogies Breyer offers at the end of the excerpt are
appropriate. Evidence exists that certain chemicals, even at very low concentrations,
are toxic, whereas the two examples Breyer provides are designed to be absurd be-
cause we apparently have no reason to fear any harm at the lower magnitudes.

96 BREYER, supra note 20, at 43.

97 Wagner, Toxic Risk Regulation, supra note 5, at 1682-84 (objecting to the EPA’s
focus on human epidemiological data to the exclusion of other studies based on
animal data or in vitro studies).

98 BREYER, supra note 20, at 48-51, 55-56; Wagner, Toxic Risk Regulation, supra
note 5, at 1673-74, 1677-88.
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tion of a small, centralized administrative group, charged with a ratio-
nalizing mission,” which would have prestige, independence, and
substantial authority.®® Wagner is more focused on political accounta-
bility and process, which leads her to propose procedural amend-
ments to the Administrative Procedure Act.1%° Wagner’s reforms have
two elements: First, the amendments would “expressly require the
agencies to separate science from policy and task the courts with the
responsibility for ensuring that the agency does so in an accurate and
accessible way;” second, if an agency passes this first test, a reviewing
“court should accord the content of the policy and science decisions
great deference.”’! In short, Wagner relies on a different group of
experts—judges—to provide a procedural check on scientific experts
engaged in environmental policymaking.

Both proposals have serious drawbacks. Much of the case for
Breyer’s proposal turns on the political isolation and objectivity of the
elite administrative group he recommends. Even setting aside con-
cerns about political accountability,'°2 insulating such a group from
politics seems wildly unlikely. One need only consider the political
storms surrounding nominations of federal judges, who may be politi-
cally insulated once appointed but must first traverse a political
minefield.!%® Given the broad authority Breyer intends to delegate to
this elite group, it is virtually inconceivable that a similar vetting pro-
cess would not arise. Federal scientific advisory boards offer another
point of comparison.1%¢ Despite their (generally) low profile, highly
technical orientation, and limited tenures, scientific advisory boards
have not been immune to politicization—especially where environ-
mental issues are concerned. In 1983, for example, the Reagan Ad-
ministration was known to have had a “hit list” for “green” scientists

99 BREYER, supra note 20, at 59-61.

100 5 U.S.C. §§ 551-559 (2000).

101 Wagner, Toxic Risk Regulation, supra note 5, at 1711-12 (footnote omitted); see
also McGarity, supra note 5, at 746-47 (describing a proposal that shares many similar-
ities with Wagner’s).

102 Wagner, Toxic Risk Regulation, supra note 5, at 1674-77.

103  See Stephen Murdoch, The Politics of Judicial Confirmation, WasH. Law., Sept.
2002, at 22.

104  See, e.g., JaAsANOFF, supra note 84, at 1-2 (describing scientific advisory commit-
tees as “offer[ing] a flexible, low cost, means for government officals to consult with
knowledgeable and up-to-date practitioners in relevant scientific and technical
fields”); BrRuce L.R. SMiTH, THE ADVISERS: SCIENTISTS IN THE PoLicy Process 1 (1992)
(noting the existence of about 1000 different committees and dividing them into four
categories: peer review panels, program advisory committees, ad hoc factfinding or
investigating committees, and standing committees).
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on the EPA’s Scientific Advisory Board.!®> More recently, the current
Bush Administration has been accused by prominent members of the
scientific community of creating “an epidemic of politics” in its ap-
pointments to scientific advisory boards.!% These realities make polit-
ical insulation chimerical where powerful interests are affected, and
they seriously undermine Breyer’s approach.

Wagner all but concedes the major flaw in her proposal toward
the end of her article: “Although the capability of the judiciary to re-
view science-policy delineations is the limiting factor to success of the
reform, it is conceivable that this obstacle can be overcome.”1°? Wag-
ner acknowledges this difficulty earlier, concluding that “distinguish-
ing between questions resolvable by science and those that must
remain trans-scientific requires familiarity with the current capabilities
and limitations of scientific experimentation.”'® I am far less san-
guine than Wagner about relying on judicial review. First, scientific
literacy is only a necessary condition; it provides no assurance that the
courts’ procedural distinctions, which also are vulnerable to value
judgments, will not be shot through with political considerations. Sec-
ond, an analogue of her proposal exists in the National Environmen-
tal Policy Act (NEPA)'%9 and suggests further obstacles. Like
Wagner’s amendments, NEPA is designed to promote better informed
decisions by federal agencies and to enhance public participation.!!¢
Moreover, while NEPA’s regulations do not precisely contemplate
Wagner’s distinction, their mandate that the incompleteness or un-

105 JAsaNoOFF, supra note 84, at 89.

106 The Bush Administration has been accused of “stacking” several high-profile
committees, most notably the CDC’s Advisory Committee on Childhood Lead Poison-
ing and the FDA’s Reproductive Health Drugs Advisory Committee. See Ceci Con-
nolly, Hill Group Faults HHS for Ideology, WasH. Post, Oct. 22, 2002, at A25; Maureen
Dowd, Editorial, Tribulation Worketh Patience, N.Y. TiMes, Oct. 9, 2002, at A27; Dan
Ferber, Critics See a Tilt in a CDC Science Panel, 297 Science 1456 (2002); Ellen Good-
man, Editorial, Religious Profiling?, WasH. Post, Oct. 19, 2002, at A23; Donald Ken-
nedy, An Epidemic of Politics, 299 SciENce 625 (2003); Sheryl Gay Stolberg, Bush’s
Science Advisers Drawing Criticism, N.Y. Times, Oct. 10, 2002, at A27; Rick Weiss, HHS
Seeks Science Advice to Match Bush Views, WasH. PosT, Sept. 17, 2002, at Al. This is also a
political issue, with several Democrats now objecting to the Administration’s practices.
See David Malakoff, Democrats Accuse Bush of Letting Politics Distort Science, 301 SCIENCE
901 (2003).

107 Wagner, Toxic Risk Regulation, supra note 5, at 1719.

108 Jd. at 1627.

109 42 U.S.C. §§ 4321-4370(f) (2000).

- 110 See National Environmental Policy Act of 1969, 42 U.S.C. §§ 4321, 4332; see also
40 CF.R. §§1500.1, 1501.2 (2002). Implementing regulations for NEPA stress the
importance of effectively communicating with the public and addressing directly
questions regarding “incomplete or unavailable information.” Id. § 1502.22.
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availability of information be disclosed is very similar.!!! Experience
with NEPA is not promising with regard to either streamlining the
regulatory process or improving transparency: NEPA is the preemi-
nent statute for delaying agency action, and the environmental impact
statements that NEPA mandates are notoriously arcane.!'? The same
complex science, politics, and bureaucratic tendencies are likely to
overwhelm Wagner’s reforms as well. '

Breyer and Wagner both make sweeping generalizations from the
uncertainties of risk assessment methods without considering science
more broadly.!!'® This narrow scope weakens their arguments and is
compounded by their apparently static view of environmental sci-
ence.!'* Fixating on trans-science also causes them to ignore that sci-
ence is itself a process and to blithely reject the potential for science
to progress.'15> Breyer and Wagner both fall into this trap by failing to
address the tradeoffs that exist between maintaining scientific integ-
rity and safeguarding democratic principles, and this oversight under-
mines the merits of both their arguments in the process. Part I1.B.
discusses the origins of scientific uncertainty and theories of scientific
progress in order to clarify the problems Breyer and Wagner raise and
to explain how scientific judgment is used in environmental science.

111  Council on Environmental Quality Environmental Impact Statement, 40 C.F.R.
§ 1502.22. This section requires a statement to be included in an environmental im-
pact statement regarding all incomplete or unavailable “information relevant to rea-
sonably foreseeable significant impacts.” Id.

112 WiLiaM H. RopcGers, ENVIRONMENTAL Law § 9.1, at 817-18 (2d ed. 1994)
(describing an “avalanche of litigation” and injunctions); Bradley C. Karkkainen, To-
ward A Smarter NEPA: Monitoring and Managing Governments’ Environmental Performance,
102 CorLum. L. REv. 903, 915-16 (2002) (noting the highly technical nature of envi-
ronmental impact statements); William C. Sullivan et al., Assessing the Impact of Envi-
ronmental Impact Statements on Citizens, 16 ENvIL. IMPACT AsSESSMENT Rev. 171, 174-75,
177-79 (1996) (observing that citizens generally do not comprehend the information
presented in a typical environmental impact statement).

113 Breyer claims the example of “cancer-causing substances” has “illustrative
power,” but nowhere seeks to substantiate this claim. BREYER, supra note 20, at 3.

114 In fact, trans-science is frequently defined as immune to scientific investiga-
tion. See McGarity, supra note 5, at 733-34 (“[Bly definition, scientific experimenta-
tion is incapable of resolving trans-scientific issues.”); see also FosTerR & HUBER, supra
note 82, at 55 (“[Transscience] concerns questions that are scientific in Popper’s
sense but are not resolvable in practice.”).

115 The concept of transscience is further complicated by environmentalists’
claims that scientific facts and values cannot be separated. Yet, if science, as opposed
to trans-science, is to have any content, it seems to demand that science be capable of
establishing facts that are independent of value judgments. Reliance on the science/
trans-science distinction therefore seems to require qualification of the factvalue ar-
gument environmentalists often make.
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Part II.C. presents a methodologically grounded view of science that
offers a different account of how quantitative methods succeed.

B.  The Problem of Underdetermination in Science

Breyer and Wagner focus on a single instance of a much broader
question—how to obtain reliable scientific information and theories.
The aim of this discussion is to demonstrate that no single scientific
theory (or statistical technique) is adequate to the task; all are dis-
torting insofar as they utilize an imperfect framework for evaluating
scientific problems. This incomp]eteness, however, should not be
construed to imply that science is hopelessly indeterminate; to the
contrary, methodological strategies exist that overcome these short-
comings. The discussion that follows briefly examines the treatment
of scientific uncertainty by Karl Popper and Thomas Kuhn. As already
noted in the Introduction, the discussion will draw on arguments
made regarding judicial review to ground the scientific theory in fa-
miliar legal territory.

Classical positivists or empiricists, such as Francis Bacon, por-
trayed science as consisting purely of gathering positive facts from
which scientific theories are mechanically inferred.!'¢ They believed
that knowledge is obtained passively, through nature imprinting itself
on inert minds, and that scientific uncertainty is simply an absence of
facts.!1? This passive model was challenged by the interpretive Kant-
ian school, which asserted that all experience and understanding are
actively mediated through an innate conceptual framework. In the
last century, the work of Karl Popper incorporated the Kantian activist
model.!''® Popper believed that reliable scientific inference is best
achieved through a combination of imaginative hypothesis testing and
a rigorous war of attrition, or falsification, based on hard-headed criti-
cal analysis.!!®

Popper’s work has been immensely influential in science and
law.!2¢ A central tenet of Popper’s work is that scientific inference is

116  See ALAN MusGRAVE, COMMON SENSE, SCIENCE AND ScEePTICISM 48-54 (1993);
DoroTHy Ross, THE ORIGINS OF AMERICAN Social SciENce 17-18 (1991).

117 Imre Lakatos, Falsification and the Methodology of Scientific Research Programmes, in
CriTicisM AND THE GROWTH OF KNOWLEDGE 91, 104 (Imre Lakatos & Alan Musgrave
eds., 1970).

118 KarL R. Popprer, CONJECTURES AND REFUTATIONS 93-96, 190-91, 383-84
(1963).

119 Id. at 26-30.

120 Popper, in particular, was favorably cited by the Supreme Court in the seminal
1993 Daubert opinion. Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579,
593 (1993). Popper and Carl Hempel were the only two philosophers cited by the
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never purely instrumental—facts and theories combine to alter an in-
dividual’s conceptual framework, as opposed to merely augmenting
their breadth of knowledge.!2! Popper’s position is analogous to the
commonplace view that a judge’s perspective is necessarily influenced
by her experience (facts), which, in turn, will affect the principles
(theories) she considers when interpreting a given constitutional pro-
vision (fact). Moreover, because theories are inextricably linked to
facts, theories may operate in an observational mode to generate facts
for hypothesis testing (e.g., theories about how compounds absorb
light are used in experiments designed to test theories about atmos-
pheric pollution) or may be the subject of hypothesis testing
themselves.

Popper began with two central arguments: (1) “all theories are
not only equally unprovable but also equally improbable,”'2? and (2)
“no conclusive disproof of a theory can ever be produced.”’?? This lat-
ter argument is critically important because it necessitates the rejec-
tion of naive logical positivism, which is premised on the possibility of
falsifying, as opposed to verifying, scientific theories. According to
Popper, those who wait for conclusive disproof before eliminating a
theory will have to wait forever, and “will never benefit from experi-
ence.”!24 Naive logical positivism therefore fails for the same reason
that classical empiricism does, namely, all factual observations are

Supreme Court. Id. According to the Court, “[s]cientific methodology today is based
on generating hypotheses and testing them to see if they can be falsified; indeed, this
methodology is what distinguishes science from other fields of human inquiry.” Id.
(quoting Michael D. Green, Expert Witnesses and Sufficiency of Evidence in Toxic Sub-
stances Litigation: The Legacy of Agent Orange and Bendectin Litigation, 86 Nw. U. L. Rev.
643, 645 (1992)). The Supreme Court then went on to quote Popper directly: “[T]he
criterion of the scientific status of a theory is its falsifiability, or refutability, or
testability.” Id. (quoting POPPER, supra note 118, at 37).

121 PopeEr, supra note 118, at 108-14; KarL R. Porper, THE LoGIC OF SCIENTIFIC
Discovery 37-38, 59 n.1 (1959).

122 Lakatos, supra note 117, at 95; see also PopPER, supra note 121, at 27-30,
254-62. The argument goes as follows: First, if theories cannot be proven by facts, but
only falsified, then all theories are fallible. Second, if all facts are constructed from
fallible theories, then all facts themselves are also fallible. Third, if all facts used to
negate theories are fallible, then the experimental negation of any theory is itself also
fallible. This series of syllogisms may be summed up as follows: “Scientific theories
are not only equally unprovable, and equally improbable, they are also equally undis-
provable.” Lakatos, supra note 117, at 103. Moreover, theories become more resistant
to empirical challenges as they mature. Id. at 101-02.

123 PoppER, supra note 121, at 50, 80-81 (emphasis added); see also POPPER, supra
note 118, at 278-79 (noting that “actual tests are never conclusive and always
tentative”).

124 PopPpER, supra note 121, at 50.
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“theory impregnated” and thus do not exist outside a theoretical
framework.!25 Scientists, for example, cannot conduct an unmediated
measurement of a chemical’s toxicity because theories about exposure
levels and pathways, animal models, and experimental controls are re-
quired to make sense of the data and to direct how an experiment is
conducted. Accordingly, just as judges often must appeal to substan-
tive principles to interpret a constitutional provision, so too must
scientists use substantive theories to resolve the meaning of their data;
both are theory-impregnated in this sense.

Popper’s second argument can be restated as follows: no single
theory “forbid[s] any observable state of affairs.”!2¢ An example will
help to illustrate this point. Assume that an astronomer has observed
a planet revolving around a distant star and is able to map the planet’s
orbit based on her observations.'?” Assume further that the observed
orbit deviates significantly from the orbit one would expect to find by
performing classical (i.e., Newtonian) calculations. Does this devia-
tion lead the astronomer to reject Newton’s theory? No. The astrono-
mer will instead construct a hypothesis (e.g., an unknown second
planet is altering the first planet’s orbit) to explain the orbital devia-
tion and then conduct further experiments to test the validity of this
secondary hypothesis. Popper argued that a chain of such observa-
tions followed by “correcting” or “auxiliary” hypotheses could be con-
structed to explain away any deviant result, and that this process could
go on indefinitely.’?® Any collection of facts is therefore going to be
theoretically underdetermined because it can be accounted for by nu-
merous competing theories.

Underdetermination creates a fundamental dilemma: If theories
can neither be proved nor disproved conclusively, on what grounds
may scientists adopt any given scientific theory? Popper attempted to
resolve this problem by recourse to a “survival-of-the-fittest” model for
science, under which hypothesis selection occurs through a process of
falsifying theories against each other rather than against isolated
facts.129 For each test, one theory is employed as the (tentatively) ac-
cepted “background knowledge” that supplies the facts employed to

125 PoPPER, supra note 118, at 188-89. Some theorists claim that logical positivism
“is at this stage dead.” Interview by Werner Callebaut with Philip Kitcher, Professor of
Philosophy, University of California at San Diego, in San Diego, Cal. (June 1, 1990),
in TARING THE NATURALISTIC TURN, OR How REAL PHILOSOPHY OF SCIENCE 1S DONE 128
(Werner Callebaut ed., 1993).

126 Lakatos, supra note 117, at 100-01, 116.

127 Id. at 100-01.

128 Id. at 100-01; PoPPER, supra note 121, at 82-83.

129 PopPPER, supra note 118, at 52; POPPER, supra note 121, at 42, 49-50.
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test a second theory.!'30 Popper further required that all such back-
ground knowledge be “well corroborated,” i.e., subject to extensive
testing itself, and that auxiliary hypotheses be investigated exhaus-
tively.’3! A theory is therefore “scientific” insofar as it predicts or ex-
plains phenomena that may be tested against facts supported by
another well corroborated theory.!32 Scientific inference according to
Popper is relative to the existing information, theories, and auxiliary
hypotheses; it is also ultimately a matter of convention supported by
Judgment, not of rigorous deductive logic alone. According to Pop-
per, the fallibility of science cannot be overcome; it can only be
counteracted by rigorous testing and critical analysis.

Thomas Kuhn built on Popper’s work, but took it in a very differ-
ent direction.!®® Where Popper claims discrete experiments can sup-
port scientific inference, Kuhn argues that experiments are
unavoidably ambiguous because no theory is ever consistent with all of
the available experimental evidence.!®* Kuhn also inverts Popper’s
priorities by arguing that the strength of science is its theoretical sta-
bility, not Popper’s unrelentingly critical mode of inquiry. Kuhn be-
lieves scientific progress is made by scientists tenaciously investigating
an accepted theory, both because it generates cumulative knowledge
and because it propels theoretical innovation.135

Kuhn posits that science evolves through revolutionary shifts in
which an accepted theory is replaced by one that is radically differ-
ent.'*¢ He then develops this position by reconceptualizing important
scientific developments through two central constructs: scientific para-
digms and normal science.!®” Under this framework, the progress

130 Popper, supra note 118, at 112, 238-40; PoppER, supra note 121, at 75-77;
Lakatos, supra note 117, at 107-09.

131 PoppEr, supra note 121, at 266-69; Lakatos, supra note 117, at 106-08.

132 PorppER, supra note 121, at 86-87, 104-05, 109-11.

133  See Thomas S. Kuhn, Logic of Discovery or Psychology Research?, in CRITICISM AND
THE GROWTH OF KNOWLEDGE, supra note 117, at 1, 1-3 (acknowledging the close simi-
larity of his and Popper’s views-on many issues).

134 " Id. at 15-16. Drawing on historical examples, Kuhn shows that even for the
most fully corroborated paradigms, significant, unexplained contrary evidence exists.
See THoMAs S. KUHN, THE STRUCTURE OF ScienTiFic REvoLuTIiONs 79, 81-83 (3d ed.
1996); see also PAUL FEYERABEND, AGAINST METHOD 50-53 (3d ed. 1993) (stating that
even the most well corroborated theories may sometimes be inconsistent with the
evidence).

135  See KUnN, supra note 134, at 162-65. Kuhn also uses the natural selection met-
aphor. See id. at 146.

136  See id. at 92-94,

137 A paradigm has two basic elements: First, it represents the constellation of be-
liefs, values, and techniques shared by a scientific community; second, it is sustained
by “concrete puzzle-solving” of problems discovered within a paradigm that arise as a
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from one paradigm to the next does not proceed through logical ex-
tensions because paradigms are incommensurable with each other,
meaning they are only imperfectly comparable or translatable.!38
Kuhn infers from this observation that theories cannot be rejected
solely based on inferences from experimental results—in his words,
the “decision to reject one paradigm is always simultaneously the deci-
sion to accept another.”!3® The discontinuous nature of scientific de-
velopments leads Kuhn to conclude that adopting a new paradigm is
an almost quasi-religious “conversion experience” that requires an act
of “faith.”140 Kuhn does not, however, maintain that paradigm shifts
are utterly irrational. He believes that such revolutionary thinking is
justified by broad scientific values, such as simplicity, breadth, and
consistency, and that these values are just as critical to scientific pro-
gress as rigorous methods.14! Kuhn thus is not a scientific relativist;
he merely rejects the belief that science progresses through, and is
defined by, a shared “algorithmic decision procedure.”142

For Kuhn, broad principles are integral to science, and it is the
acceptance of their inherent indeterminacy that allows him to grasp
what he believes is the great strength of science—normal science.
The theoretical stability of normal science enables cumulative data
collection and theory development to occur. Moreover, normal sci-
ence either further corroborates a paradigm or (ultimately) precipi-
tates a theoretical crisis, and paradigm shift, by exposing its
anomalies.!*® Thus, although Kuhn rejects the notion that scientific
progress can be prescribed algorithmically, through normal science
he discovers the conditions necessary for science to progress.'4¢ Kuhn

theory is elaborated. /d. at 175, 182-84. Normal science is limited to concrete puzzle
solving that is “firmly based upon one or more past scientific achievements,” which
are treated as fundamental and uncontested. Id. at 10.

138  See id. at 101-03, 122-23, 148-50; Thomas-S. Kuhn, Possible Worlds in History of
Science, in PossiBLE WORLDS IN HUMANITIES, ARTS AND SCIENCES 9-11 (Sture Allén ed.,
1989); Thomas S. Kuhn, Reflections on my Critics, in CRITICISM AND THE GROWTH OF
KNOWLEDGE, supra note 117, at 231, 266-67. Kuhn has been convincingly criticized
on this point, for there are many examples in which competing theories and ideas
coexist (e.g., theories of matter). See, e.g., John Watkins, Against ‘Normal Science,” in
CriTicisM AND THE GROWTH OF KNOWLEDGE, supra note 117, at 25, 34-36.

139 KuHN, supra note 134, at 77, 79.

140 Id. at 151, 156-58.

141 Kunn, supra note 11, at 330-34.

142 See id. at 326-27.

143 The virtue of normal science is paradoxical, for it is dogged commitment to a
paradigm and to its exploration that exposes a paradigm’s weaknesses and causes its
failure. Id. at 96, 98, 165-70.

144 Despite their different frameworks, important parallels exist between Popper’s
and Kuhn’s perspectives. First, both theories rely on some form of tentatively ac-
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therefore distinguishes between scientific certainty, which he views as
unattainable, and progress, which he defines through the combined
workings of normal science and shifting scientific paradigms.

Significant disparities exist between how Popper and Kuhn por-
tray science, on the one hand, and how science is typically understood
within the legal community, on the other. The views of Breyer and
Wagner illustrate these differences. They believe that chemical risk
assessment and, in Breyer’s case, regulatory science more generally,
lie somewhere on the margins of rigorous scientific practices. Breyer
is clearest on this point:

Predicting risk is a scientifically related enterprise, but it does not
involve scientists doing what they do best, namely developing theo-
ries about how x responds to y, others things being equal .. . . Scien-
tists are happier looking for large differences in small populations
over short periods of time than looking for small differences in
large populations over long periods of time. To do the latter, they
must make many simplifying assumptions that are often
questionable.!4?

This view manifests a limited understanding of what scientists do,
particularly with respect to the analytical and statistical methods they
employ. First, as Jeffreys’s work demonstrates, not all science involves
running large numbers of carefully controlled experiments to test a
theory.146 Many areas of science, such as ecological fieldwork and at-
mospheric science, rely on discrete observations that cannot be care-
fully controlled or indefinitely repeated. Scientists have also
constructed theoretical models and methods that require little empiri-
cal testing for them to be accepted.'*” Second, as Popper showed,
scientists routinely make simplifying assumptions in the face of uncer-
tainty with the objective of iteratively testing the validity of these as-
sumptions and the confidence scientists should have in them. The so-

cepted theory: Kuhn relies on normal science; Popper utilizes background knowl-
edge. Second, each theory posits a central mechanism that propels scientific
progress: Kuhn’s mechanism is the breakdown of normal science; Popper’s is a strict
critical mode of inquiry. Third, each approach has a model for scientific inference
and theory choice. On this point, however, a fundamental conceptual difference
emerges. Popper’s model for scientific inference and theory choice is his convention
for critical analysis. Kuhn, in contrast, treats the two separately: scientific theory
choice is a matter of psychological conversion; scientific inference occurs within the
bounds of normal science. Se¢ KUHN, supra note 134, at 144-46. As a result, Popper
inherently places a higher premium on scientific judgment, while Kuhn views its role
as being generally limited by the theoretical boundaries of normal science.

145 BREYER, supra note 20, at 42-43.

146  See supra Part 1.

147  See, e.g., LAUDAN, supra note 30, at 172-73.
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called transscientific junctures that Wagner and Breyer identify are
therefore central to all areas of science and not unique to chemical
risk assessment.

Popper and Kuhn show that, at some level, all scientific theories
are uncertain because they cannot be definitively proved or disproved.
Science thus does not consist of mechanical true-false testing, but
must turn on the degree of confidence a hypothesis warrants based on
whether it has withstood (or failed) rigorous testing.'#® Further, sci-
entific testing itself entails auxiliary hypotheses and background
knowledge, both of which will vary in the degree to which they are
corroborated. Risk assessors’ assumptions about extrapolation models
are, for instance, directly analogous to the auxiliary hypotheses cli-
mate scientists integrate into their atmospheric models.'4® In the for-
mer, risk assessors typically assume a linear relationship exists between
chemical dose and risk, even at very low exposure levels; in the latter,
climate scientists must make myriad assumptions to derive a relation-
ship between greenhouse gas levels and mean global surface tempera-
ture. These judgments are unremarkable because experimental work
is scientific insofar as models and hypotheses are rigorously tested and
evaluated—science is “a process rather than the product of
inquiry.”150

The categorical division between science and trans-science, im-
plicit in Breyer’s work and explicit in Wagner’s, conflicts with this view
of science as process. Trans-science is typically defined as involving
Jjudgments that are unresolvable by science, and thus presumptively
matters of policy.’®! This definition has intuitive appeal at the ex-
tremes—the question whether the sun is going to rise tomorrow is
clearly not a matter of policy. The problem is that once one goes
beyond such simple cases, it becomes increasingly difficult to deter-
mine what is science and what is policy. Is the decision to use a simpli-

148 FosTer & HUBER, supra note 82, at 239-40.

149 Oreskes et al., supra note 83, at 642 (“The problem of deductive verification is
that if the verification fails, there is often no way to know whether the principal hy-
pothesis or some auxiliary hypothesis is at fault.”). Climate scientists must contend
with a global-scale system and integrate a vast range of interactions, including solar
physics and energy balancing, atmospheric chemistry, and ocean-atnosphere interac-
tions. L.D. DANNY HARVEY, GLOBAL WARMING: THE HARD Science 121-29 (2000). Cal-
culating the human impact on climate requires scientists to model mathematically
each of these features of Earth’s climate system. Id.

150 Gaskins, supra note 83, at 152-53; Jan Beyea & Daniel Berger, Scientific Miscon-
ceptions Among Daubert Gatekeepers: The Need for Reform of Expert Review Procedures, 64
Law & ConTEMP. ProBs., Spring/Summer 2001, at 327, 331-32.

1561  See supra Part II.A; Wagner, Toxic Risk Regulation, supra note 5, at 1619
nn.21-22,
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fied model of experimental conditions a matter of scientific judgment
or a matter of policy? Or, is the choice between two experimental
methods, neither of which is ideal, a policy decision or a scientific
determination? Scientists make innumerable decisions like these and,
because of their own limited knowledge, also make many implicit
judgments that they may not even be able to articulate.’® It is diffi-
cult to see how trans-science can be defined in a coherent manner
because, as Popper’s work implies, scientific proof accrues in shades
of gray; it does not fall neatly into resolvable and unresolvable
categories.

Lawyers encounter an analogue of this line drawing problem in
critiques of formalist theories of judicial review. As described in the
Introduction, legal formalism limits judicial textual interpretation to
the plain meaning of the Constitution (just as scientific positivism is
limited to facts). Ciritics of legal formalism point out that it en-
counters a crucial problem when resolving how generally a constitu-
tional provision should be construed.!® For example, it is unclear
whether the constitutional right to privacy should extend to married
couples, to heterosexual couples, to all consensual adult relationships,
or to all consensual relationships regardless of the age or maturity of
the individuals.'®* Strict legal formalism, as a consequence, is viable
for only trivial cases of judicial review, making antiformalist methods
unavoidable. This uncertainty is just another instance of un-
derdetermination: Judges are unable to rule out competing interpre-
tations because specific constitutional language is consistent with
several competing interpretations, which are supportable by various
auxiliary principles a judge may invoke. The science/trans-science
distinction is empty for the same reason: Developing science—mean-
ing most science—falls under the category of transscience, making
the distinction heavily one-sided and of limited practical utility.

These problems suggest that the focus on trans-science is misdi-
rected and, at best, a surrogate for what I believe is the real issue—the
proper scope of scientific discretion in environmental decisionmak-
ing. The legal analogy applies here as well: The concept of trans-sci-
ence is used to establish a boundary for scientific expertise that
circumscribes what is deemed unalloyed science in the same manner
in which legal formalism is often used to limit judicial discretion.

152  Similarly, relying on scientific consensus to delimit science from trans-science,
as Wagner does, is troublesome because it is unclear what degree of consensus (or
conflict) is sufficient. Furthermore, some important judgments may not be subject to
broad scientific debate, making the concept of consensus all but irrelevant.

153 See Brest, supra note 14, at 1084-85.

154 Id.
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Once a question is declared trans-scientific, scientific judgment is pre-
sumptively owed less (perhaps no) deference and other factors, partic-
ularly societal values, are elevated for consideration.'®> There are, of
course, very good reasons for questioning whether scientists should
have the authority to make decisions that involve matters of policy
that transcend their technical knowledge and expertise. Unfortu-
nately, the debate over trans-science has not fostered much thought-
ful reflection on scientific discretion; instead, its primary utility has
been as an offensive weapon against purportedly overzealous reliance
on scientific methods.

An examination of the need for and scope of scientific discretion
requires a different approach. Assessing the proper scope of scientific
discretion is dependent on one’s theory of science, just as judicial dis-
cretion is tied to one’s theory of judicial review. Scientific positivism,
for example, limits scientific discretion to a narrow reading of experi-
mental evidence, whereas Kuhn’s theory, which is premised on a bal-
ance between standard analytical methods (normal science) and
broad principles, affords scientists relatively broad discretion. This as-
sociation makes it all the more important for lawyers and policymak-
ers to have a concrete understanding of how science is conducted, as
they are often in the position of determining how scientific judgments
are utilized in environmental law. However, the current debate over
environmental science ignores this relationship because it lapses ei-
ther into positivist caricature, which ignores scientific judgment alto-
gether, or relativist critique, which portrays scientific judgments as
inherently political and a matter of policy. The debate over the
proper role of scientific expertise in environmental policymaking
ought to move beyond these misleading images of science.

A relatively straightforward case can be made for the importance
of scientific discretion and judgment in good science. The preceding
discussion suggests three basic arguments. First, scientists routinely
make judgments in the face of uncertainty, as opposed to slavishly re-
lying on empirical results from which they mechanically derive their
conclusions. Consequently, the experience and knowledge upon
which scientists draw are of significant value in setting environmental
policy. Second, as both Popper and Kuhn demonstrate, science is a
process that is reliant on individual judgments and discretion. Pro-
tecting the integrity of this process, which must include substantial
latitude for individual judgments, is essential if environmental science

155  Breyer’s position on this point is mystifying, as he described what scientists like
to do in narrow terms and then granted them extremely broad discretion to set envi-
ronmental policy. See BREYER, supra note 20, at 42—43, 64-68.
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is going to progress.!56 Third, the authority of science does not derive
from some form of analytical determinism—scientific methods are fal-
lible and uncertain—but from the potential for science to achieve a
status of accepted truth.!5? In short, the scientific processes used to
establish facts as accepted truths are contingent on, and thus warrant,
scientific judgment.

These points in no way diminish the importance of political con-
cerns about relying on scientific expertise. Instead, they reveal that
important tradeoffs exist between deferring to and overriding scien-
tific judgments in environmental policymaking. The term trans-sci-
ence proves misleading because it presumes the scientific process can
be separated from policymaking. In particular, while it is true that
well accepted science can be separated from policy, the process used
to attain them cannot, as it entails numerous scientific judgments that
invariably have important implications for policy. As environmental-
ists have often argued, the scientific process (like its judicial counter-
part) encompasses matters that are hybrid in nature—both questions
of science and questions of policy. The challenge inherent in envi-
ronmental law is to maintain the integrity of both the political and
scientific processes at the same time. In this light, the proposals that
Breyer and Wagner advocate represent contrasting judgments about

156 Concerns about the corruption of science by politics is evident in objections to
the Bush Administration’s selection processes for members of federal agency scien-
tific advisory boards and in the volatility of debates over climate change and geneti-
cally modified organisms. See supra note 106 and accompanying text; Roger A. Pielke,
Policy, Politics and Perspective: The Scientific Community Must Distinguish Analysis From Ad-
vocacy, 416 NATURE 367, 367-68 (2003) (decrying the politicization of science and
urging the scientific community to establish formal institutional mechanisms that
buffer science from policymaking). Lysenkoism in Russia, from about 1935 to 1964, is
the classic example of politics undermining the integrity of science. Trofim Lysenko
was a leading proponent of the Lamarckian theory of evolution, which held that bene-
ficial traits could be cultivated and developed during an organism’s lifetime and
passed on to its offspring. Lysenko was responsible for popularizing this theory and
obtaining the support of the Soviet leadership. He was also instrumental in the cen-
sorship, disappearance, and imprisonment of numerous scientists who advocated Dar-
winian natural selection and Mendelian genetics. Russian biology, as a result,
languished for three decades under the burden of the governing communist ideol-
ogy. See Bert Black et al., Science and the Law in the Wake of Daubert: A New Search for
Scientific Knowledge, 72 Tex. L. Rev. 715, 769-71 (1994).

157 The political scientist Ian Shapiro makes a similar point: “Science holds out
the hope that we can get beyond the welter of conflicting opinions and ideological
claims to the truth of the matter, that we can come to hold a set of beliefs about an
entity, event, or action that is most reasonable under the circumstances . . . .
[A]lthough this is often difficult in practice, there is no reason to rule it out in princi-
ple.” IaN SHapirO, PoLrticaL Crrticism 274 (1990).
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protecting scientific and political processes, and the weaknesses in
their respective approaches are a testament to just how difficult it is to
formulate a framework for achieving such a balance. In Part IV, I
enter the fray further by proposing an alternative to the approaches
advocated by Breyer and Wagner.

The third rationale for scientific authority and discretion is per-
haps the most important and least understood. Skepticism about sci-
ence is often fueled by the general public’s lack of understanding
about how science is practiced and how it progresses. Skeptics with
relativist leanings, in particular, challenge whether scientific truths ex-
ist at all and whether science should be accorded the level of authority
it often receives. The next section describes scientific methods in de-
tail and makes the case for the power of science to generate accepted
truths. Again, my objective is not to argue that science should be set
above everything else, but rather to substantiate the claim that impor-
tant tradeoffs exist between scientific progress and political considera-
tions, and to show how scientific truths emerge from the uncertainties
Popper and Kuhn exposed.

C. Experimental Bootstrapping as an Answer to Underdetermination

Breyer and Wagner are correct in portraying chemical risk sci-
ence as methodologically weak, but the problem is not its simplifying
assumptions per se. The flaw in chemical risk models is that current
testing methods are neither sufficiently stringent nor well corrobo-
rated. An important objective for environmental policy in the area of
chemical risk assessment therefore ought to be the development of
more powerful testing methods. This would require both a major
shift in the science, given the inherent limitations of current chemical
testing methods, and significant additional resources.!>® The views of
legal scholars such as Breyer and Wagner, however, provide little in-
centive for such a forward looking approach. To the contrary, debates
about environmental science among lawyers have come precariously
close to rejecting the contributions science can make in deepening
our understanding of chemical toxicology.

Legal commentators fail to acknowledge that basic experimental
methods can circumvent the broad theoretical uncertainties Popper
and Kuhn identified.!>® Specifically, independent and diverse testing

158  See BREYER, supra note 20, at 43—47; Wagner, Toxic Risk Regulation, supra note 5,
at 1620-27.

159 This approach rejects Popper’s extreme form of underdetermination, which
treats “the logically possible and the reasonable [as] coextensive.” LAUDAN, supra
note 30, at 29; see also id. at 37-40. Popper’s underdetermination thesis amounts to
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methods diminish the importance of theoretical underdetermination
in obtaining evidence of the truth or falsity of a scientific hypothesis.
The power of this approach is illustrated by the late nineteenth cen-
tury dispute over biometrics and Mendelism.!6® The scientific debate
over biometrics and Mendelism was highly politicized because biomet-
rics provided the scientific basis for the eugenics movement, which
was popular at the time.!6! The dispute stalled, however, because
neither theory was well grounded and only limited experimental
methods were available.?%2 Scientists debated the form in which the
data were quantified: Mendelian scientists used a binary metric that
categorized traits into opposites, such as “hairy” or “hairless” and “yel-
low” or “green.”!63 Biometricians used continuous variables, replac-
ing, for example, the hairy-hairless categories with a continuous
measure of the number of hairs per unit area.!'®* Both groups
adopted metrics based on their respective theories to validate them.

the “assumption that, unless we can show that a scientific hypothesis cannot possibly
be reconciled with the evidence, then we have no epistemic grounds for faulting
those who espouse that hypothesis.” Id. at 29. In other words, if I can contrive a
hypothesis, no matter how implausible, that is equally supported by the existing data,
then no epistemologically valid reason exists to prefer the hypothesis under investiga-
tion over this alternative. The standard example illustrates this point using a collec-
tion of observations all finding that emeralds are green. According to the
underdetermination thesis, the hypothesis that all emeralds are green is epistemically
equivalent to the “Grue” hypothesis, which maintains that all emeralds are green until-
a new observation is made, after which all emeralds will be blue. While it is true that
both theories are logically equivalent, insofar as they both entail the existing data
equally well, it stretches credulity to assert that both are equally reasonable. See id. at
43-44. This section explains how experimental methods differentiate competing
theories.

160 Biometrics and Mendelism were hotly contested at the time. “The bi-
ometricians . . . believed that evolution was a process of gradual change, taking place
by the selection of continuous differences.” DonNALD A. MAcKENzIE, STATISTICS IN
BriTaIN 1865--1930, at 130 (1981). Mendelism, in contrast, held that evolution oc-
curred through discontinuous changes in species as certain traits were activated or
deactivated. Id. at 131-33.

161  See id. at 29-31, 36—40, 52-56.

162 See id. at 120-22. :

163 Id. at129. “The two sides could not always agree even on the facts that stood in
need of explanation or description.” Id. at 123.

164 Id. at 129. At the time, an important methodological debate existed over the
statistical validity of two methods for summing up data. Id. at 153, 161-75. One
group of statisticians argued for the statistical validity of “interval” (continuous) vari-
ables, which clearly supported biometrics; a second group urged “nominal” (categori-
cal) variables, which provided a statistical model for Mendelism. The two methods of
statistically summing up the data naturally reflected the ideological biases of the indi-
viduals who developed them, and the two statistical methods reflected the theory of
evolution each supported. Id. at 168-75. Biometrics was premised on the continuous
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These different approaches to scaling the data made the experi-
mental results incompatible with each other.'> Data collected by a
Mendelian scientist presupposed Mendelian traits that fell into strict
categories, whereas data collected by a biometrics scientist was pre-
mised on continuously variable traits that could not be fit into Mende-
lian categories. This incommensurability arose because each group of
scientists used their respective theories to construct experimental sta-
tistics. As such, neither statistical test was severe in Popperian terms.
First, the observation method used, here embodied in the sample sta-
tistics, was premised solely on the theory being tested.!'¢¢ Second,
neither theory was well corroborated. The resulting experiments were
weak and circular.'®? However, circular in this context does not mean
tautological, as the data could have contradicted the Mendelian the-
ory if, for example, no consistent patterns of heredity were ob-
served.!6® Rather, this circularity implies the test was narrow, much as
if one were to base a broad legal doctrine on a single case or incident.

The indeterminacy of the science and the surrounding politics
split the scientific community into ideological factions for years.!69
The weaknesses of both sets of experiments led to a stalemate because
no independently acceptable basis existed to assess the relative merits
of the two theories. Indeed, this same circularity is evident in many

variation of biological traits because it maintained that evolution occurred incre-
mentally, whereas Mendelism asserted that biological traits, and thus evolution, were
discontinuous, shifting from one state to another.

165 See id. at 122-24 (“The incommensurability of the two positions [did lead] to
difficulties of understanding and communication.”).

166 I1aN HACRING, REPRESENTING AND INTERVENING 183-85 (1983) (providing an ex-
ample of the same dependence of observation and theory in solar physics).

167 See KarL R. PorPER, THE PoverTy OF HisToRiCIsM 108-11 (1957) (raising the
same objection in a different context).

168 Kuhn describes this circularity in a slightly different manner:

If . .. there can be no scientifically or empirically neutral system of language

or concepts, then the proposed construction of alternate tests and theories

must proceed from within one or another paradigm-based tradition. Thus

restricted it would have no access to all possible experiences or to all possi-

ble theories. As a result, probabilistic theories disguise the verification situa-

tion as much as they illuminate it. . . . Verification is like natural selection: it

picks out the most viable among the actual alternatives in a particular histor-

ical situation. '
KunN, supra note 134, at 146.

Statistical testing, in short, is subservient to substantive theory, and is no more
able to resolve scientific questions beyond the theoretical framework from which it
originates than scientists operating within a given paradigm.

169  See id. at 120-22 (discussing how scientists may come up with different conclu-
sions based on the same observations, to show the indeterminacy of science).
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risk assessments and cost-benefit analyses, which lack good indepen-
dent observational methods and well-established theory. Two critical
points emerge from this example: (1) The process of defining a statis-
tical variable imposes significant analytical constraints and reflects the
subservience of statistical quantification to scientific theory, and (2)
statistical methods are far less powerful if they are dependent on the
theory being tested.!” The Mendelism-biometrics dispute also reveals
how and why weak scientific methods reduce questions of quantifica-
tion to ideological factionalism.

Independent observational techniques overcome circular testing
methods and minimize problems that derive from the theory-laden
nature of facts.'”! In doing so, this approach decouples theory from
fact to a high degree.'”? A standard example of this strategy involves
the first observation of “dense bodies” in red blood cells.17”® When
dense bodies were initially observed, the scientist conducting the ex-
periment believed they were an artifact of his observational method,
here an electron microscope.!7* To test this hypothesis, he selected a
different observational technique, a fluorescence microscope, which

170 These practical and epistemological limits derive from chance being in part a
measure of human knowledge. The temperature of a gas, for example, operates as a
meaningful measure of its total kinetic energy, and thus represents a discrete physical
property that is accurately represented by a single metric. One can make such a claim
only because the governing physical theory is well established. Other statistical met-
rics, such as IQ or risk, are much less well theoretically and empirically corroborated.
(It is interesting to note that IQ tests were often characterized as a “clinical thermom-
eter.” JOANNE BrRowN, THE DEFINITION OF A PROFESSION: THE AUTHORITY OF META-
PHOR IN THE HiSTORY OF INTELLIGENCE TESTING, 1890-1930, at 76-77, 81 (1992).)
While it is natural for Bayesians to accept these epistemological constraints, frequen-
tists’ aspirations for objectivity run counter to accepting these deeper philosophical
limitations.

Both statistical schools have nevertheless characterized statistical techniques in
terms of “summarizing” data or evidence, which both qualifies the purported objectiv-
ity of quantitative statistical techniques and highlights their reductive functions. Fre-
quency-type theorists, for example, have stated that statistical information is best
understood as an “extremely brief summary of the [available] data bearing on the
true value of some magnitude [of a system or thing].” HACKING, supra note 33, at 173;
see also HACKING, supra note 12, at 214-15. Similarly, Bayesians have claimed that
Bayes’s method “sum(s] up the evidential meaning of new information.” Id. at 181;
see also HOwig, supra note 37, at 114-15 (preferring a “Simplicity Postulate” to the
“frequency theory”).

171 See HACKING, supra note 166, at 184-85 (arguing both that observation-theory
independence generates more compelling experiments and that the experiments
themselves are not necessarily dependent on theory); LAUDAN, supra note 30, 48—49.

172 See Mavo, supra note 23, at 16-17.

173  See Hacking, supra note 166, at 200-02.

174 Id.
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operated according to completely different physical principles.!'”® As
it happened, the scientist observed the dense bodies with the fluores-
cence microscope, refuting his original hypothesis that they were an
artifact.!’®¢ The logic behind this approach is straightforward:

Two physical processes . . . are used to detect [dense] bodies. These
processes have virtually nothing in common between them. They
are essentially unrelated chunks of physics. It would be preposter-
ous coincidence if, time and again, two completely different physi-
cal processes produced identical visual configurations which were,
however, artifacts of the physical processes rather than real struc-
tures in the cell.'7?

Under this approach, the crucial assumption (i.e., auxiliary hy-
pothesis) is the independence of the distinct fields from which the
observational methods derive. Further, by taking advantage of the
theoretical disunity of science in this manner, the significance of high-
level theories (which invariably require more simplifying assumptions
to test) is minimized because an overarching theory is unnecessary.!”®

The examples discussed so far bear out the value of this ap-
proach. Since the Mendelism-biometrics dispute arose in the nine-
teenth century, scientists have made huge advances in biochemistry
and analytical chemistry, which in turn have enabled genes to be ob-
served and tested through a variety of experimental methods. These
developments avoided the circularity of the earlier debate and
defused it altogether. In short, science reduced an ideology-laden de-
bate over statistical quantification to one based on well corroborated,
independently validated facts. Such shifts in theory and experimental
methods continue to be critical today. For example, recent develop-
ments in toxicogenomics, which involves the application of rapid ge-
netic screening methods to the field of toxicology,'” are likely to
revolutionize current chemical toxicity testing methods by offering

175 Id. at 201.
176 Id.
177 Id
178 Id. at 208-09; see also Mavo, supra note 23, at 8-9, 16-17.
179 Toxicogenomics is based on obtaining a profile of
the cell-wide changes in gene expression following exposure to toxins. This
approach creates the potential to provide a molecular “fingerprint” of expo-
sure or toxicological response to specific classes of toxic substances . . . . The
toxicological significance of gene expression changes must be validated, in-
cluding an evaluation of the robustness of [gene expression] results between
or across different laboratories, species, individuals, tissues and time periods.
Gary E. Marchant, Toxicogenomics and Toxic Torts, 20 TRENDS IN BioTECH. 329, 329-30
(2002).
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new faster, less expensive alternatives.’8® These methods also have the
potential to achieve for toxic risk assessment what biochemistry did
for Mendelian genetics—the replacement of a weak testing regime
with a set of diverse, independent methods.!®! The critical point here
is that science can lead to an array of independent testing methods,
which both generate reliable, objectively verifiable data and enhance
our theoretical understanding of challenging problems in environ-
mental science. _

The value of this approach lies not just in the credibility of the
science, but also in efficiency gains. Research on climate change, for
example, is heavily dependent on statistical methods because the prin-
cipal metric of climate change is a statistically averaged global surface
temperature.!82 Predictably, this single metric approach has been
criticized because it obscures a great deal of important regional infor-
mation.!®® The response of scientists has been pragmatic and pluralis-
tic: develop the best information possible using a single metric and, at
the same time, work towards developing alternative predictors of cli-
mate change.!8* Under this approach, climate change research is not
limited to a group of chemists and physicists developing massive com-
puter models for simulating future increases in the average global sur-
face temperature. Instead, studies in areas as diverse as lake ecology,
glaciology, tropospheric chemistry, and volcanism are being con-
ducted under the umbrella of climate change research.!®> These
studies do not provide data that are fed directly into large-scale cli-
mate models; instead, they create a composite picture, based on inde-

180  Seeid. at 330-32; see also Jocelyn Kaiser, Tying Genetics to the Risk of Environmental
Diseases, 300 Science 563, 563 (2003); Gary E. Marchant, Genetics and Toxic Torts, 31
SeToN HaLL L. Rev. 949, 980 (2001); Gary E. Marchant, Genomics and Toxic Substances:
Part I—Toxicogenomics, 33 ENvrL. L. Rep. 10,071 passim (2003).

181 Marchant, supra note 179, at 329.

182  See supra note 77, HARVEY, supra note 149, at 75; Stephen H. Schneider, De-
tecting Climatic Change Signals: Are There Any “Fingerprints”?, 263 SciEnce 341 (1994).
The limits of existing climate models force a methodological compromise: scientists
must balance their interests in exploiting more detailed information using a mul-
tivariate method against obtaining data relevant to existing climate models. See id. at
341.

183 Schneider, supra note 182, at 341, 345. To their credit, climate scientists have
openly acknowledged the limits of a single metric approach. See id.; CLIMATE CHANGE:
THE IPCC SCIENTIFIC ASSESSMENT Xii—xiii, XXv, xxxv—xxxix, 247-48 (J.T. Houghton et
al. eds., 1990) [hereinafter IPCC].

184 See Schneider, supra note 182, at 345-46; IPCC, supra note 183, at 247-48.
Scientists must “[w]ork across many scales and disciplines to understand physical,
chemical, biological, and relevant societal processes, {and] their interactions . . . .”
Schneider, supra note 182, at 345.

185 HarvEy, supra note 149, ch. 2.
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pendent measurements, that is far more powerful than any one of the
studies on its own ever could be. This pluralistic approach is critical
because climate models are decades away from being able to predict
regional impacts with a reasonable level of accuracy. Complementary
studies fill in some of these gaps and enhance the credibility of the
science as a whole.

The advances in climate change research have been extraordi-
nary given the relative youth and difficulty of the field. In an area
arguably far more complex than chemical toxicology, scientists have
produced predictive models, numerous experimental methods, and a
huge amount of valuable information. This success derives in signifi-
cant part from the multidisciplinary approach scientists have taken
and their cultivation of independent measurements. A secondary
benefit of this strategy is that it often allows scientists to make simpler
arguments—explaining why two methods are distinct often is easier
than explaining their mechanisms in detail. Similar to the comple-
mentary microscope measurements described in the dense body ex-
ample, most people can understand intuitively that atmospheric
physics and glacial ice core data derive from distinct areas of science
and that complementary results from independent fields strongly re-
inforce each other. This accessibility and the decoupling of fact from
theory lessens, though by no means eliminates, the ideological nature
of the debate over climate change in the scientific community and, to
a lesser degree, beyond it as well.

As lawyers, we inevitably focus on institutional and legal mecha-
nisms for solving difficult problems in environmental policy. This ten-
dency is encouraged by current polarized conceptions of science,
which characterize science either as mechanistic or as infused with
difficult value judgments and theoretical indeterminacies. As I have
tried to show above, neither science nor its quantitative methods fall
neatly into these extremes. Simple experimental strategies can gener-
ate reliable facts even where significant theoretical indeterminacies
exist. Environmental law and policy would benefit from lawyers and
policymakers having a greater appreciation of the basic experimental
methods used to resolve important controversies in environmental
science.

III. MiIsCONCEPTIONS ABOUT TRADITIONAL STATISTICAL METHODS IN
ENVIRONMENTAL PoLicy

Statistical methods, either Bayesian or frequentist, provide the ba-
sic analytical framework for scientists to draw inferences from the ex-
periments they conduct. Laypeople typically associate statistical
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inference with frequentist significance tests, which assess whether ex-
perimental data deviate “significantly” from the predictions of a test
hypothesis. Statistical significance for most people therefore implies
that a scientist has discovered an effect not predicted by that scientist’s
starting hypothesis. Few lawyers, and indeed relatively few scientists,
have experience with Bayesian methods, which directly measure the
probability that a hypothesis is true rather than providing a rigorous
test of its validity. This Part will examine frequentist methods of statis-
tical inference and will focus on presumptions about burdens of proof
in drawing scientific inferences from discrete scientific studies—stage
two of the three-stage framework described in the Introduction. Baye-
sian methods will be considered in the final Part of the Article.

Frequency-type statistical inference, as discussed in Part I, is inex-
tricably tied to a world view in which phenomena are defined by their
frequencies in abstract populations or classes. Environmentalists find
this view problematic for two central reasons. First, statistical infer-
ence becomes dependent on this dubious “bingo game” model of the
universe and science is practiced by experimentally isolating and ran-
domly sampling such populations.!®¢ For environmentalists, this
model appears to conflict with more holistic ecological models, as it is
premised on a disconnected and atomized world ruled by chance.
Second, and most importantly for this Part, frequentist methods al-
most invariably presume that environmental impacts are benign until
proven guilty.’®” In order to connect the discussion to a familiar legal
doctrine, 1 will examine criticism of frequentist methods that are
based on the Precautionary Principle, which draws on and is intended
to alter traditional methods of scientific inference.!®® The tensions
between frequentist statistical methods and the Precautionary Princi-
ple will be evaluated (largely agnostically), and a novel approach to

186 See Howik, supra note 37, at 74; Collins, supra note 30, at 336. Recall the guid-
ing metaphor of frequentist statistics is Mendelian genetics, under which long-run
frequencies are determined by random selections of specific traits, as opposed to spe-
cific relationships or causes (i.c., biological, chemical, or physical). See supra Part 1.

187 See Katherine Barrett & Carolyn Raffensperger, Precautionary Science, in PrRo-
TECTING PuBLIC HEALTH & THE ENVIRONMENT, supra note 85, at 106, 111-12; Carl F.
Cranor, Asymmetric Information, The Precautionary Principle, and Burdens of Proof, in PrRo-
TECTING PuBLIC HEALTH & THE ENVIRONMENT, supra note 85, at 74, 79; D.H. Kaye, Is
Proof of Statistical Significance Relevant?, 61 WasH. L. Rev. 1333, 1345 (1986).

188 Barrett & Raffensperger, supra note 187, at 108-09, 115; Andrew Jordan &
Timothy O’Riordan, The Precautionary Principle in Contemporary Environmental Policy and
Politics, in PROTECTING PuBLic HEALTH & THE ENVIRONMENT, supra note 85, at 15, 17
(noting that the Precautionary Principle “challenges the established scientific
method”).
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frequentist statistical testing will be proposed that addresses concerns
about systemic biases in traditional methods of scientific inference.

The Precautionary Principle embodies the old adage “better safe
than sorry” by placing protection of public health and the environ-
ment above other interests even when evidence of harm is not proven
definitively.18® The Precautionary Principle is premised on the belief
that “[i]f there is a potential for harm from an activity and if there is
uncertainty about the magnitude of impacts or causality, then antici-
patory action should be taken to avoid harm.”1%¢ The Rio Declaration
on Environment and Development describes the Precautionary Princi-
ple as follows: “In order to protect the environment, the precaution-
ary approach shall be widely applied by States according to their
capabilities. Where there are threats of serious or irreversible dam-
age, lack of full scientific certainty shall not be used as a reason for
postponing cost-effective measures to prevent environmental
degradation.”'!

In at least some of its myriad formulations, the Precautionary
Principle proposes a balancing test of sorts, under which the potential
level of harm, degree of scientific uncertainty, and likely alternatives
for a product or action are assessed to determine the appropriate reg-
ulatory strategy.192 If, for example, the potential level of harm from a
product is great, the scientific uncertainty significant, and numerous
low cost alternatives available, the Precautionary Principle would favor
a ban on the product. Conversely, if the level of harm is low, the sci-
entific uncertainty minimal, and the alternatives limited and very ex-
pensive, the Precautionary Principle would favor less stringent

189 Frank B. Cross, Paradoxical Perils of the Precautionary Principle, 53 WasH. & LEE L.
Rev. 851, 851 (1996).

190  Introduction to PROTECTING PuBLIC HEALTH & THE ENVIRONMENT, supra note 85,
at 1.

191  The Rio Declaration on Environment and Development, U.N. Conference on Env’t &
Dev., U.N. GAOR, 46th Sess., U.N. Doc. A/CONF.151/5/Rev.1 (1992), reprinted in 31
LL.M. 874, 880 (1992). Different versions of the Precautionary Principle appear in a
variety of other international agreements. See David Santillo et al., The Precautionary
Principle in Practice, in PROTECTING PUBLIC HEALTH & THE ENVIRONMENT, supra note 85,
at 36, 41-45.

192  See Nicholas A. Ashford, A Conceptual Framework for the Use of the Precautionary
Principle in Law, in PROTECTING PuBLIC HEALTH & THE ENVIRONMENT, supra note 85, at
198, 199-200 (discussing the elements of the Precautionary Principle); Jordan &
O’Riordan, supra note 188, at 25 (“[P]recaution is often linked to some consideration
of risks, financial costs, and benefits.”); Deborah Katz, The Mismatch Between the Bio-
safety Protocol and the Precautionary Principle, 13 Geo. INT'L EnvTL. L. REV. 949, 95657
(2001) (illustrating the elements of the Precautionary Principle).
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regulation. More complicated balancing is required when cases fall
between these extremes.

The Precautionary Principle has both Bayesian and frequentist
characteristics. The balancing test described above, for example, sug-
gests a straightforward weighting of the evidence that would be com-
patible with a Bayesian approach. However, perhaps because
frequentist methods are better known, the Precautionary Principle is
more often discussed in frequentist terms. Thus, proponents of the
Precautionary Principle justify it on the ground that the uncertainty of
risk ought to be borne by the regulated industry, rather than the “po-
tential victims.”!9% This rationale is often expressed in terms bor-
rowed from frequency-type probability theory:

When a regulator makes a decision under conditions of uncertainty,
there are two possible types of error. The regulator can overregu-
late a risk that turns out to be insignificant or the regulator can
underregulate a risk that turns out to be significant. If the regulator
erroneously underregulates, the burden of this mistake falls on
those individuals who are injured or killed, and their families. If a
regulator erroneously overregulates, the burden of this mistake falls
on the regulated industry[,] which will pay for regulation that is not
needed. This result, however, is fairer than setting the burden of
uncertainty about a risk on potential victims.!94

As this account suggests, the Precautionary Principle incorporates
basic rules about minimizing error rates from frequentist inference
methods.1% In this context, erroneous overregulation and under-
regulation are variants of statistical significance (i.e., Type I error or
false positives) and power (i.e., Type II error or false negatives).196
Environmentalists have used the frequentist framework to argue that

193 Sidney A. Shapiro, Keeping the Baby and Throwing Out the Bathwater: Justice
Breyer’s Critique of Regulation, 8 AbmiN. L.J. Am. U. 721, 732 (1995).

194 Id. Under this view, differences in who bears the risk (victims versus stockhold-
ers, employers, and consumers), the number of people who bear the risk (few versus
many), and the types of risks (financial versus emotional and psychological) justify
affording higher protection to “potential victims.” Id.

195 See Talbot Page, A Generic View of Toxic Chemicals and Similar Risks, 7 EcoLoGY
L.Q. 207, 219-20, 230-39 (1978). This early articulation of the Precautionary Princi-
ple drew directly on frequency-type probability theory:

The costs of wrong decisions are asymmetric for environmental risk in in-
verse proportion to the potential net costs and benefits associated with each
of the two hypotheses. The cost of a false negative—deciding that the be-
nign hypothesis is true when it is not—is much higher than the cost of a false
positive—deciding that the catastrophic hypothesis is true when it is not.
Id. at 220 (footnote omitted).
196  See infra Part ILA.



2004] SCIENTIFIC ACTIVISM AND RESTRAINT 545

Type II errors, meaning the risks from underregulation, should be
accorded much greater weight than Type I errors in standard statisti-
cal tests used in regulatory environmental science.!®” Of course, one
could, and many people do, disagree with this approach as a general
rule, as instances will exist in which the net societal harm from over-
regulation is greater than underregulation.!®® For the purposes of
this discussion, disagreements over this point are unimportant; one
need only accept that the risks from underregulation sometimes will
clearly outweigh those from overregulation.

The conventional levels for statistical significance are an obvious
target because they are arbitrarily set.!%® If one accepts the Precau-
tionary Principle, raising Type I errors and lowering Type II errors in
the regulatory context is thus perfectly acceptable to account for asym-
metries between potential victims and regulated industries.2%° How-
ever, while this rationale is valid, it often ignores the indirect nature of
frequentist concepts and overemphasizes their role in scientific deter-
minations. To begin with, statistical significance is a measure of the
reliability of a statistical test; it is not a direct standard of persuasion
like “beyond a reasonable doubt.”20! Thus, the direct result from rais-
ing the significance level of a statistical test is that the threshold for
rejecting a test hypothesis is lowered.?%? This change is only indirectly

197  See Ashford, supra note 192, at 202-03; Barrett & Raffensperger, supra note
187, at 117; Lene Buhl-Mortensen, Type-1I Statistical Errors in Environmental Science and
the Precautionary Principle, 32 MARINE PoLLuTiON BuLL. 528, 529-31 (1996); Cranor,
supra note 187, at 79; Mark Geistfeld, Reconciling Cost-Benefit Analysis With The Principle
That Safety Matters More Than Money, 76 N.Y.U. L. Rev. 114, 118-19 (2001); Reed F.
Noss, Some Principles of Conservation Biology, As They Apply to Environmental Law, 69 Ci.-
Kent L. Rev. 893, 896-97 (1994); Randall M. Peterman & Michael M’Gonigle, Statisti-
cal Power Analysis and the Precautionary Principle, 24 MarINE PoLLuTiOoN BuLL. 231,
231-33 (1992); K.S. Shrader-Frechette & E.D. McCoy, Statistics, Costs and Rationality in
Ecological Inference, 7 TRENDs IN EcoLocy & EvoLuTion 96, 97 (1992); Michele Territo,
The Precautionary Principle in Marine Fisheries Conservation and the U.S. Sustainable Fisher-
ies Act of 1996, 24 VT. L. REV. 1351, 1351-52 (2000).

198 See, e.g., Cross, supra note 189, at 859-61.

199  See infra Part I11.A.; HACKING, supra note 12, at 225; Collins, supra note 30, at
339.

200 Page, supra note 195, at 230-39.

201  See David F. Parkhurst, Statistical Significance Tests: Equivalence and Reverse Tests
Should Reduce Misinterpretation, 51 BioscieNce 1051, 1057 (2001); see also Lawrence H.
Lehmann, The Fisher, Neyman-Pearson Theories of Testing Hypotheses: One Theory or Two?,
88 J. AM. StaT. Ass’N 1242, 1243 (1993) (noting that mathematical uncertainty or
probability is not an adequate expression of uncertain inferences of every kind).

202  See infra Part IIL.A (noting that statistical testing thus involves a one-sided com-
petition between the null hypothesis and the conjecture that turns on the fidelity of
the null-hypothesis model in matching the experimental data).



546 NOTRE DAME LAW REVIEW [vor. 79:2

related to a legally required burden of persuasion, and its impact on
Type II errors is not as simple as it might seem initially.2°3 The follow-
ing sections clarify these relations, suggest a direct method for ad-
dressing environmentalists’ concerns about Type II errors and
allocating the burden of proof, and examine the respective limits of
statistical inference and the Precautionary Principle in scientific
decisionmaking.

A.  The Indirect Nature of Frequentist Statistical Inference

The frequentist definition of probability is central to understand-
ing traditional methods of statistical significance testing. Frequentists
define probability as the long-run frequency or propensity of a popu-
lation, system, or thing.2°¢ The properties that may be studied are
almost infinitely variable, limited only by imagination and what can be
measured. The concept of long-run frequency has been aptly charac-
terized as “combin[ing] individual irregularity with aggregate regular-
ity,” such that measurement of a system’s longrun frequency
converges to a fixed value as the number of observations increases.2%5
The long-run frequency of a fair coin turning up heads, for example,
converges to one-half as the number of trials approaches infinity.206
Scientists thus collect repeated measurements (i.e., sample) of a pop-
ulation to obtain an accurate measure of such long-run frequencies.
Statistical significance testing assesses the correspondence of such sta-
tistical samples with hypotheses regarding the true long-run popula-
tion frequency being measured.

Statistical inference for frequentists revolves around determining
the degree to which an experimental sample statistic is approximated
by a normal distribution model.2%7 For example, suppose you believe

203  See, e.g., George Casella & Roger L. Berger, Reconciling Bayesian and Frequentist
Evidence in the One-Side Testing Problem, 82 ]J. AM. STAT. Ass’N 106 (1987); Morris H.
DeGroot, Doing What Comes Naturally: Interpreting a Tail Area as a Posterior Probability or
as a Likelihood Ratio, 68 J. AM. STAT. Ass’N 966 (1973).

204 Hacking, supra note 33, at 1-2.

205 Id. at 5 (quoting JounN VENN, THE Locic oF Cuance 4 (London, Chelsea
1866)); see also HACKING, supra note 12, at 145, 190-91, 196-97.

206 HAckING, supra note 12, at 191-92; HACKING, supra note 33, at 214. Propensity
theorists ignore long-run frequencies, focusing instead on those attributes that cause
fixed frequencies. See HACKING, supra note 12, at 145; PORTER, supra note 29, at
121-22. A die, for example, has symmetry properties that dictate its probabilistic ten-
dencies. According to this account, probabilistic models, like abstract physical theo-
ries, embody mathematically specific properties of the systems or things they
accurately represent.

207 The “binomial distribution” is a mathematically precise representation of a
coin tossing system; the normal distribution is a fair approximation to the binomial
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the coin’in your pocket is fair and you want to test the validity of this
starting hypothesis by flipping the coin a thousand times. For any
fixed number of observations, the normal distribution offers a simpli-
fied model for the distribution between heads and tails, which in this
case predicts that there is about a two-thirds probability of the number
of heads lying between 495 and 505 and a 0.95 probability of it lying
between 490 and 510.29% The normal distribution in this case provides
a mathematical approximation of experimental conditions in which
variability is purely random and the coin has an equal probability of
obtaining a heads or tails on each toss (fairness). If your experimen-
tal result were 491 heads, you would be reasonably confident in the
fairness of the coin; conversely, if your experimental result were 400
heads, you would likely question your initial hypothesis about the
coin’s fairness.209

Testing a pesticide’s toxicity provides a more informative and re-
alistic example of significance testing.?!® The basic approach, how-
ever, is the same: Just as a normal distribution can be used to model
the behavior of a fair coin, it may be used as a model of experimental
conditions limited by random errors, which requires a carefully con-
trolled testing regime.?!! Frequentists utilize the following conven-
tion for hypothesis testing: (1) a “null” hypothesis, which assumes no
effect exists (i.e., the pesticide is harmless); and (2) a “conjecture,”
which assumes some effect exists (i.e., the pesticide has a discernable

distribution for tests involving at least thirty trials (i.e., flips of the coin). Mavo, supra
note 23, at 171.

208 HackiNg, supra note 12, at 203-04, 206.

209 The detailed analysis is actually a little more complicated. The assumption
that the coin is fair implies that an event of probability much less than one percent
would have occurred if you obtained 400 heads. One does not, however, reject one
theory in a vacuum, but only rejects it if a better one exists. HACKING, supra note 33,
at 79-81. If a statistical analysis reveals the chance of the experimental results occur-
ring is very small, say 0.0001, there are two possible inferences one can make. Id. at
65, 83. One might attribute the low value to the observation theory, i.e., the statistical
and experimental methods; for example, the result could imply that the flips of the
coin in the preceding example were not independent. Id. at 83. Alternatively, one
might attribute it to the explanatory theory (the fairness of the coin) if independence
is well founded. In either case, a low statistical value merely shows that “if there is any
alternative hypothesis which will explain the occurrence of the sample with a more
reasonable probability, say 0.5 . . . you will be very much more inclined to consider
that the original hypothesis is not true.” /d.

210 HACKING, supra note 12, at 213-15. ,

211 The experiment must be designed to ensure that the experimental observa-
tions are independent (i.e., each experimental test for toxicity is independent of the
others) and that systematic errors are minimized (e.g., randomization, double-blind
testing, etc.). See Mavo, supra note 23, at 4-7, 16-17.
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toxic effect).2'2 In this scheme, the null hypothesis incorporates the
normal distribution as a model of the population (i.e., a human popu-
lation insensitive to pesticide exposure) that the experiment is sam-
pling; the experimental data are then compared against this
population model.213

The null-hypothesis method leads to a counterintuitive result:
The probability calculated is not the probability that the pesticide is
harmful, but rather the probability of obtaining the experimental data
assuming the null hypothesis is true.2!* In the pesticide example, the
incidences of harm observed experimentally are compared against the
likelihood of that frequency of harm occurring if the pesticide had no
effect. As a result, a high probability of obtaining the experimental
results under the null-hypothesis model of the experiment implies “we
cannot tell which hypothesis is correct”—a different, untested hypoth-
esis could have a higher probability.2!> Conversely, a low probability
indicates “the null hypothesis seems likely to be false.”2?!¢ In either
case, frequency-type statistical testing does not provide a straightfor-
ward assessment of the probability that the pesticide is harmful; it is
instead based on two measures of the null-hypothesis model’s error
rates—significance and power.2!7

212 HACKING, supra note 12, at 214. The relevant data for this test are the inci-
dences of harm (e.g., carcinogenisis) among individuals exposed to the pesticide and
among those not exposed, generally referred to as the control group. Under the null
hypothesis, the two populations (exposed and unexposed) are assumed to have equal
incidences of harm.

213 Id.; see also Collins, supra note 30, at 335. The null hypothesis is a matter of
faith, not of logic or science, and thus is not an ultimate criterion of truth because
“[t)here is no way to test a statistical model statistically . . . . [Such an effort] leads only
to logical regress.” Id. at 336. Moreover, while it makes sense that disparate causal
chains should be treated as completely independent, many gradations exist in be-
tween. As Keynes observed, “[a] remote connection or a reaction quantitatively small
is a matter of degree and not by any means the same thing as absolute indepen-
dence.” KEYNEs, supra note 58, at 283. Other theorists have acknowledged the impor-
tance of “non-normal” distributions, particularly in heterogeneous systems, but these
efforts have been largely ignored. See PORTER, supra note 29, at 26465, 307-10.

214 HACKING, supra note 12, at 214-15. In a 1986 article, Professor David H. Kaye
provided a very clear exposition of the confusion that often arises in the context of
legal actions over the meaning of statistical significance. See Kaye, supra note 187.

215 Parkhurst, supra note 201, at 1057.

216 Id. Stated otherwise, the statistical testing of the null-hypothesis model asks
the question: “Do we lack evidence that the [pesticide] is not safe . . . ?” Id. at 1052.
Accordingly, interpreting failure to reject the null hypothesis as proof of its validity is
the “equivalent of failing to find a pair of pliers in a quick search of a messy garage
and claiming that failure to be good evidence that the pliers were not there.” Id. at
1053.

217 HACKING, supra note 12, at 209-15, 223-25.
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The principle that underlies this approach is simple: “[T]here
should be very little chance of mistakenly rejecting a true hypothe-
sis . . . [and] a good chance of rejecting false hypotheses.”2!8 The
significance of a test is thus defined as the probability of rejecting the
null hypothesis when it is true (i.e., a Type I error).2!9 Similarly, the
power of a test is defined as the probability of accepting the null hy-
pothesis when it is false (i.e., a Type II error).22 Following this princi-
ple, the general rule is that experiments should have low significance
and high power.22! This rule is difficult to implement for two reasons.
First, it is often difficult to formulate an appropriate measure for
power, which leads investigators to ignore power altogether.222 Sec-
ond, an inherent tradeoff exists between minimizing significance and
maximizing power—the basic mathematics makes it impossible, as a
general rule, to minimize them simultaneously.22> The term “signifi-
cance test” is not arbitrary in this respect; it implies that traditional
frequentist testing focuses on statistical significance, not power.

Statisticians have responded to these constraints by adopting a
convention: They minimize only Type I errors and, where possible,

218 HAckING, supra note 33, at 92. This approach is referred to as the “Neyman-
Pearson” theory, as it was first developed by Jerzey Neyman and Egon S. Pearson. Karl
Popper’s falsificationalism adopts an analogous approach to scientific testing using
frequency-type probability. See POPPER, supra note 121, at 198-205; Lakatos, supra
note 117, at 109 & n.6.

219 HackiNG, supra note 12, at 212-13, 223-25; HackiNg, supra note 33, at 92.

220 HackiINg, supra note 12, at 224-25.

221 HACKING, supra note 12, at 225; HACKING, supra note 33, at 92-93.

222 See HACKING, supra note 12, at 224-25; Lehmann, supra note 201, at 1244-45;
McBride, supra note 28, at 19. If we return to the pesticide example, delimiting the
potential alternative hypothesis is far from straightforward. The alternative to “harm-
less” is not “harmful,” it is actually a host of alternative hypotheses (and degrees of
potency) that entail some kind of harmful interaction. These problems arise for the
same reason that scientific inference generally is difficult: It is impossible to rule out
all possible alternative hypotheses. See supra Part ILB.; see also R. Lewin, Santa Rosalia
Was a Goat, 221 SciENcE 636, 639 (1983) (providing an example of poor information
and theory for development of alternatives to the null-hypothesis model in ecological
science). Nevertheless, in certain well defined experiments these indeterminacies
can be minimized, and the power of an experiment may be reduced to a relatively
simple function of the sample size. MicHAEL O. FINKELSTEIN & BRUCE LEVIN, STATIS-
TICS FOR Lawvers 182-88 (2d ed. 2001); Dennis, supra note 23, at 1101.

223  See HACKING, supra note 12, at 224-25; HACKING, supra note 33, at 92-93. The
reason for this tradeoff becomes apparent if one considers the extreme cases of ob-
taining zero Type I or Il error. If Type I errors were set at zero, the test would effec-
tively reject the null hypothesis all the time, causing Type II errors to increase
substantially, and an analogous increase in Type I errors would occur if Type II errors
were set at zero. In between these extremes, a tradeoff exists between the two types of
errors and no general method exists for simultaneously minimizing them. /d.
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formulate a null hypothesis for which Type I errors are the more seri-
ous ones.22¢ In practice, however, the starting hypothesis in a signifi-
cance test is by default a no-effect null hypothesis, meaning that the
Type I error being minimized in most statistical tests is identifying a
risk where none exists—not failing to discover a risk that is real. Fol-
lowing this convention, statistical tests are characterized by their “sig-
nificance level” (i.e., Type I error rate), such that a test is “significant
at the one-percent level” when the null-hypothesis model of the exper-
iment predicts that there is a 1% chance of observing the experimen-
tal result.225 More concretely, if a pesticide were, in fact, not harmful,
there would be only a 1% chance of observing the relative increase in
incidences of harm observed experimentally. Significance levels are
typically either 0.05 (95%) or 0.01 (99%) but, as suggested above,
these standard levels are neither driven by principle nor logical neces-
sity.226 To the contrary, they represent an arbitrary rule established by
convention that early on was likely dictated by mathematical
simplicity.227

Environmentalists focus on Type I and II error rates because the
no-effect null hypotheses used almost universally in significance test-
ing are contrary to the Precautionary Principle. In the pesticide ex-
ample, for instance, the starting hypothesis was that the pesticide was
harmless. This formulation fails to minimize the errors of greater

224  See Mavo, supra note 23, at 372-74; J. NEvMaN, First COURSE IN PROBABILITY
AND STtATISTICS 261-64 (1950).

225 HACKING, supra note 12, at 212-13. As such, “a hypothesis or significance test
determines whether an observed result is so unlikely to have occurred by chance
alone that it is reasonable to attribute the result to something else.” Kaye, supra note
187, at 1333. More precisely, a 1% significance level means the following: “If a desig-
nated null hypothesis is true, then, using a certain statistic that summarizes informa-
tion from an experiment like ours, the probability of obtaining the data that we
obtained, or less probable data, is 0.01.” HackiNg, supra note 12, at 215. In the ab-
sence of a conjectured theoretical model, significance testing takes on a mindless
quality because it amounts merely to finding that “[¢] ither the null hypothesis is true,
in which case something unusual has happened by chance (probability 1%), or the
null hypothesis is false.” Id. at 243.

226 HACKING, supra note 12, at 216-18. Confidence limits, which are related to
significance but used for point estimates, often also employ 95% or 99% limits by
convention. A “confidence limit” of 95% represents the following: the point estimate
with which it is associated was made using a procedure that gives a correct estimate
95% of the time. Id. at 234-36, 240-41.

227 See Collins, supra note 30, at 337, 339; Kaye, supra note 187, at 1343—45; Leh-
mann, supra note 201, at 1244. The choice of 0.05 and 0.01 is at least partly a “mathe-
matical accident” based on the normal distribution, for which “it is unusually easy to
compute the 99% and 95% accuracy probabilities for some phenomena.” Hacking,
supra note 12, at 217.
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concern to environmentalists (i.e., failing to regulate when the pesti-
cide is in fact harmful) because they are treated as Type II errors.
Environmentalists argue that asymmetries in the severity of Type I and
II errors can be corrected by relaxing a statistical test’s significance
level, which they believe shifts the presumption away from the null
hypothesis and, in effect, lowers the burden of persuasion for finding
harm.?2® This reasoning illustrates two important misconceptions
about frequentist methods. First, it conflates the frequentist and Baye-
sian theories by interpreting the indirect statistical error rates of fre-
quentist significance testing as Bayesian degree-of-belief
probability.22® Second, it presumes that a simple relationship exists
between Type I and II errors.

Frequentist methods, as described above, employ null-hypothesis
error rates, not standards of proof. Thus, the proper interpretation of

228  See supra note 197 and accompanying text. For lawyers, the logic of this posi-
tion appears self-evident, especially in light of longstanding Supreme Court jurispru-
dence on burdens of persuasion. A good example of this is Justice Harlan’s opinion
in In re Winship:

The standard of proof influences the relative frequency of these two types of
erroneous outcomes. If, for example, the standard of proof for a criminal
trial were a preponderance of the evidence rather than proof beyond a rea-
sonable doubt, there would be a smaller risk of factual errors that result in
freeing guilty persons, but far greater risk of factual errors that result in
convicting the innocent. Because the standard of proof affects the compara-
tive frequency of these two types of erroneous outcomes, the choice of the
standard to be applied in a particular kind of litigation should, in a rational
world, reflect an assessment of the comparative social disutility of each.
397 U.S. 358, 371 (1970) (Harlan, J., concurring); see also David H. Kaye, Statistical
Significance and the Burden of Persuasion, 46 Law & CoNTEMP. PrROBs., Autumn 1983, at
13, 14-17.

229 D.H. Kaye, Apples and Oranges: Confidence Coefficients and the Burden of Persuasion,
73 CornELL L. REv. 54, 57 (1987) (noting that the “unholy union” of frequency and
belief-type theories of probability leads to incoherence and “yields arbitrary and un-
justifiable results”).

The burden of persuasion [i.e., degree of reasonable belief] is . . . not the
likelihood that the effect found was due to random error. Using statistical
significance as the equivalent of the burden of persuasion is, as David Kaye
has trenchantly stated, like ‘trying to find the shortest path from Oxford to
Cambridge by scrutinizing a map of London.’
Michael D. Green, Expert Witnesses and Sufficiency of Evidence in Toxic Substances Litiga-
tion: The Legacy of Agent Orange and Bendectin Litigation, 86 Nw. U. L. Rev. 643, 686

(1992); see also Kaye, supra note 228, at 21-23. Numerous examples of this confusion
exist. See, e.g., K.S. SHRADER-FRECHETTE, Risk AND RATIONALITY: PHILOSOPHICAL FOUN-
DATIONS FOR PorPuLIST REFORMS 132-34 (1991); To Foresee and to Forestall, in PROTECT-
ING PuBLic HeEALTH & THE ENVIRONMENT, supra note 85, at 1, 3; Barreut &
Raffensperger, supra note 187, at 111-12; Cranor, supra note 187, at 79.
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a significance test with a 95% significance level is not that failing the
test (i.e., being statistically significant) means the null hypothesis has a
95% chance of being false. Instead, meeting this error rate means
that the null-hypothesis model has less than a 5% chance of generat-
ing the observed data. In the pesticide example, the fact that the null
hypothesis has a low probability of predicting the experimental results
does not preclude it from being the most likely hypothesis—the ex-
perimental results could simply represent a rare event.?30 Interpret-
ing frequentist significance levels as quantifying the degree of support
for a hypothesis is equivalent to concluding that where A implies B it
necessarily follows that B implies A. Significance tests quantify how
likely a test hypothesis is to predict the observed data; they do not
quantify how well the observed data support a test hypothesis. Only
under certain limited circumstances may frequentist null-hypothesis
error rates be quantifiably related to a burden of persuasion and, even
where they can, the relationship is not a simple one in which unique
rates of Type I and II errors correspond to a specific burden of per-
suasion.?3! Typically, frequentist error rates will change from experi-
ment to experiment for a given burden of persuasion.?32

The effect of varying Type I and II errors must be carefully con-
sidered for several additional reasons. First, arguments regarding sta-
tistical error rates generally devolve into a rejection of conventional
significance levels with little or no consideration for how Type II er-
rors are affected. While it is true that increasing the significance level
of a test lowers Type II errors, a simple one-to-one relationship does

230 The fact that a hypothesis explains observed data well does not necessarily im-
ply that it is the most probable account. An exceedingly rare genetic disorder might
be consistent with certain observed symptoms, but if the symptoms also were reasona-
bly consistent with a very common virus, a doctor will choese the latter in her diagno-
sis of the patient because it is so much more likely to occur. Similarly, the fact that a
hypothesis is only marginally consistent with experimental results does not necessarily
imply that it is not the most probable explanation. This is no different than if you
were to role double sixes five times consecutively in a game of backgammon. The
likelihood of this occurring with fair dice is exceedingly low, but if you have no other
reasons to believe that the dice are fixed, you could reasonably conclude that a re-
markably rare event just occurred rather than that the dice are unfair. These exam-
ples involve what are often referred to as “base-rate” problems, one of which (the taxi
cab example) is discussed in detail in Part IV.A.

231 See Kaye, supra note 187, at 1355-56, 1362—63. Moreover, where multiple hy-
potheses are at issue, other analytical problems may arise. See David Kaye, The Limits
of the Preponderance of the Fvidence Standard: Justifiably Naked Statistical Evidence and Multi-
ple Causation, 1982 Am. B. Founp. Res. J. 487, 508-13.

232  See M. DEGROOT, PROBABILITY AND STATISTICS 373-82 (1975); Kaye, supra note
229, at 71-73; Kaye, supra note 228, at 17, 21-23.
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not exist between them.2?3 The relationship between the two types of
errors is complicated by the fact that Type II error is determined by
several other independent factors, such as the size of the data set and
the background incidence of the phenomena being studied.?®* Sec-
ond, indiscriminately raising the significance level of an experiment
can lead to perverse results: increased total experimental error (i.e.,
combined Type I and HI errors) with only a marginal decrease in Type
II errors.23% In such cases, statistical reliability is sacrificed without en-
vironmental concerns benefiting from a more rigorous vetting of the
data.236 Precautionary Principle proponents must thus be careful in
how they relate significance levels to legal burdens of persuasion and
how they seek to balance perceived asymmetries between Type I and
I errors in a regulatory context. It is essential to understand that fre-
quentist methods test hypotheses stringently; they do not quantify
their probability of being true directly. For frequentists, confidence
in a hypothesis instead accrues qualitatively through a hypothesis satis-
fying multiple tests.

B. Equivalence Testing: A Direct Method for Minimizing Type II Errors of
Environmental Significance

The Precautionary Principle has undeniably helped to expose the
systemic bias in traditional significance testing methods, which em-
ploy, generally by default, a no-effect null hypothesis. One can disa-
gree in specific cases whether an asymmetry exists between
underregulation and overregulation, but few people would deny that

233 See DEGROOT, supra note 232, at 275-78 (noting that a large increase in signifi-
cance level may not have a marked effect on an experiment’s power and, within a
certain range, may have little effect at all); Green, supra note 229, at 684-85.

234  See Green, supra note 229, at 685. As a general rule, experiments containing
larger statistical samples and studying phenomena with low background rates, or sig-
nificant impacts, will have lower Type II error rates. A scientist, for example, studying
breast cancer deaths associated with an industrial chemical drawing on a patient pop-
ulation of ten thousand individuals will be in a much better position to discern an
effect than a scientist studying mild cognitive impairments from lead exposure with a
patient population of one hundred individuals.

235  See id. at 687-89; Kaye, supra note 229, at 66-73.

236 The challenges of controlling statistical power are demonstrated by scientists’
recent efforts to refocus attention on statistical power by undertaking post hoc power
analyses, under which statistical power is calculated using the experimental data as an
alternative to directly improving the statistical power of their experiments. While well
intentioned, this approach is analytically flawed and logically inconsistent for reasons
related to the interpretive problems discussed here. See John M. Hoenig & Dennis M.
Heisey, The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis, 55
AM. StaTisTiciaN 19, 19-21 (2001).
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in some situations underregulation poses the more serious risk of
harm. Fortunately, the apparent bias of frequentist methods is
neither necessary nor, as a historical matter, consistent with how sig-
nificance testing was originally conceived. The statistician Jerzy
Neyman, one of the co-developers of modern significance testing, ad-
dressed the importance and meaning of Type I and II errors in his
1950 introductory text on statistics:

It is essential to notice there are two different kinds of error possible. The
adoption of {the null] hypothesis H when it is false is an error quali-
tatively different from the error consisting of rejecting H when it is
true. This distinction is very important because, with rare excep-
tions, the importance of the two errors is different, and this differ-
ence must be taken into consideration when selecting the
appropriate test. . . .

As already mentioned, the situation where the consequences of
the two kinds of errors are of unequal importance is of a very gen-
eral occurrence. It is true that in many cases the relative impor-
tance of the errors is a subjective matter . . . . However, this
subjective element lies outside of the theory of statistics. The essen-
tial point to notice is that, in most cases, the person applying a test
of a statistical hypothesis considers one of the possible errors more
important to avoid than the other. . . .

Postulating this to be the ordinary case we will use the expres-
sion error of the first kind [i.e., Type I error] to describe that particu-
lar error in testing hypotheses which is considered more important
to avoid. The less important error will be called the error of the sec-
ond kind [i.e., Type Il error] . . ..

This convention of labeling the two kinds of error is supple-
mented by a parallel convention concerning the use of the term
hypothesis tested. Let H be a statistical hypothesis and H its negation.
The term hypothesis tested is attached to H or to H in such a way that the
rejection of the hypothesis tested when it is true is an error of the first kind.?37

Neyman carefully distinguished Type I and II errors because, as
discussed above, they cannot be jointly minimized. Accordingly, a
judgment must be made regarding the appropriate tradeoff between
the two types of error.238 In significance testing, as Neyman indicates,
Type 1 errors are minimized first, that is they are given priority.
Neyman also made it clear, however, that the hypothesis tested and

237 NEYMAN, supra note 224, at 261-64.
238  See supra Part IILA.
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Type 1 error are connected—minimizing the more important error
requires that the appropriate hypothesis be tested.

Addressing Type II errors in environmental science therefore
also entails formulating an appropriate null hypothesis to test.2%® In
the standard significance tests, the null hypothesis is either that no
effect exists or that an effect does not exceed a specific level, such as a
regulatory limit.24° In these cases, the null-hypothesis model is con-
structed by positioning a normal distribution at the value in question
(i.e., zero or some other number). The Type I error then is the error
of obtaining a positive result that is false (e.g., regulating a chemical
that is nontoxic), which will result in the less important type of error
being minimized, if one either accepts the Precautionary Principle
generally or believes in the specific instance that underregulation
poses greater risks.241

The bias of conventional frequentist significance testing is com-
pounded by the common interpretive mistakes discussed earlier. Re-
call that significance testing supports one of two conclusions: either
(1) the null hypothesis is false or (2) the null hypothesis is not incon-
sistent with observed experimental data—from which one generally
cannot conclude that the null hypothesis is true.242 Nevertheless,
many people assume that failure to falsify the null hypothesis (i.e.,
lack of statistical significance) implies that no effect exists.2*® This in-
terpretive error, in effect, places the burden of proof on anyone wish-
ing to refute the null hypothesis.

Equivalence testing uses a null hypothesis that resolves both of
these problems.2#* The typical null-hypothesis model of an experi-

239 Philip M. Dixon, Assessing Effect and No Effect with Equivalence Tests, in Risk As-
SESSMENT: LoGIC AND MEASUREMENT 275, 275-76 (Michael C. Newman & Carl L.
Strojan eds., 1998).

240 It is important to recognize that shifting the starting hypothesis to a nonzero
value, such that some degree of harm is assumed at the outset, does not get you very
far. In such cases, the test minimizes the error associated with finding, for example,
the chemical does not have the specific nonzero value when in fact it does. The error
minimized remains regulating when the nonzero harm does not actually exist, not
failing to regulate when the chemical is harmful. If there is significant uncertainty
about what the actual level is, minimizing the error associated with a discrete nonzero
value is not terribly effective. To be effective, the null hypothesis needs to encompass
a range of values all at once.

241 NEYMAN, supra note 224, at 275-76; Page, supra note 195, at 231-33.

242  See supra Part IILA,; Dixon, supra note 239, at 275-76.

243 Parkhurst, supra note 201, at 1053, 1055.

244  See Berger & Hsu, supra note 28, at 283-84; McBride, supra note 28, at 20-2T;
Parkhurst, supra note 201, at 1053-54. The test described here is also sometimes
referred to as a “reverse equivalence test.” See id., at 1054-56.
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ment, as discussed above, is based on a point estimate. Equivalence
tests replace the point estimate with an interval. A zero-valued point
estimate, for example, would be replaced by an interval of, say, magni-
tude 0.01, which would range from 0.00 to 0.01.245 Just like a point
estimate, an equivalence interval also can be used for nonzero values,
either bracketing them, +0.05, or extending to one side, x + 0.01.
The null hypothesis for an equivalence test is not “the chemical is
toxic.” It is “the chemical’s toxicity is equal to or greater than x,”
where the interval is 0 to x and the value x is presumably set by a
regulatory entity.246 The conjectured hypothesis is “the chemical’s
toxicity is less than x.”247 Because the null hypothesis assumes that the
chemical is harmful, equivalence tests minimize the “more important”
error, which here is the error of declaring the chemical harmless
when its toxicity is beyond the regulatory interval (i.e., erroneously
determining that the chemical should not be regulated).24® Similarly,
the interpretive mistakes discussed above err in favor of protecting the
environment and human health, which in this case is presumptively
the more important direction to err.

An additional virtue of equivalence testing is that it is a well estab-
lished statistical method under governing Food and Drug Administra-
tion (FDA) regulations.?*® Consistent with Neyman’s reasoning, FDA
requires equivalence testing to ensure that the risk of allowing a harm-
ful drug to be sold is minimized, i.e., the more serious error is con-
trolled. Accordingly, given that the FDA is one of the most highly
regarded and scientifically sophisticated federal agencies, equivalence
testing should not raise problems from either a scientific or regulatory
standpoint. Moreover, while it is somewhat surprising that equiva-
lence testing has not been used beyond the FDA, it does not derive
from inherent limitations of the methodology, which could be applied
in a broad range of environmental sciences.?5° Instead, it is likely that

245  See Dixon, supra note 239, at 27677, McBride, supra note 28, 20-21.

246  See Berger & Hsu, supra note 28, at 283-84; Parkhurst, supra note 201, at 1054.
The example is admittedly oversimplified insofar as it suggests that toxicity can be
measured on a single metric. These complexities are not relevant here, as the central
point of the example is independent of considerations about processes for quanti-
fying the data.

247 McBride, supra note 28, at 20-21.

248 Id.

249  See id.; Dixon, supra note 239, at 279. The FDA requires generic drug manu-
facturers to use equivalence testing to determine whether a generic drug is bioe-
quivalent to an existing brand-name drug. Se e.g, FDA Bioavailability and
Bioequivalence Requirements, 21 C.F.R. § 320 (2003).

250 Dixon, supra note 239, at 279; McBride, supra note 28, at 19-20, 23; Parkhurst,
supra note 201, at 1054-56.
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the arcane nature of statistical methods and general ignorance about
them simply obscured the relevance of equivalence testing to other
legal and regulatory areas.25!

Despite these important virtues, some environmentalists may nev-
ertheless object to the use of equivalence intervals.252 Specifically, the
interval from 0 to x described in the example above is, in effect, an
interval in which the chemical’s (nonzero) toxicity is determined to
be de minimis.2>3 If the toxicity of the chemical falls entirely within
the equivalence interval, the null hypothesis for the equivalence test
(i.e., that the chemical’s toxicity is equal to or greater than x) is likely
false and the chemical will be considered safe; otherwise, the test is
inconclusive and the presumption remains that the chemical is harm-
ful. The problem raised by the equivalence interval is that—like the
convention of using a 5% significance level—no objective basis exists
for determining its magnitude.?>* The size of the interval would pre-
sumably be set by the relevant agency, which is the current practice at
the FDA.25®> For some environmentalists, the specter of allowing fed-
eral agencies to establish a priori de minimis levels for industrial
chemicals will be grounds for rejecting the method, as de minimis
levels are contrary to the chemical risk models propounded by
environmentalists.256

Such opposition would not be warranted. First, the significance
levels of traditional frequentist tests raise precisely the same problem,
just less transparently. In fact, many people consider statistical signifi-
cance levels to be defined objectively when they are set by convention.
An equivalence interval, in contrast, would be established up front as
a matter of agency policy, not under the guise of arcane statistical
rules as significance levels are.?57 Second, and more importantly,
traditional significance testing methods lack the benefit derived from
shifting the de facto burden of proof to the regulated entity and mini-
mizing the more environmentally significant type of error. Equiva-
lence testing both rectifies the systemic bias in traditional significance

251  See, e.g., Hoenig & Heisey, supra note 236, at 23; Parkhurst, supra note 201, at
1056-57.

252  See Dixon, supra note 239, at 279 (“All equivalence tests force the user to spec-
ify some region of equivalence before the data are analyzed.”).

253  See McBride, supra note 28, at 21-26; Parkhurst, supra note 201, at 1054.
254 Dixon, supra note 239, at 279; Parkhurst, supra note 201, at 1054.
255  See Berger & Hsu, supra note 28, at 284. )

256  See BREYER, supra note 20, at 44-45; Wagner, Toxic Risk Regulation, supra note 5,
at 1618-26.

257 Dixon, supra note 239, at 298.
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testing while at the same time making the judgments and conventions
in significance testing more transparent.258

Decisions regarding the use of equivalence tests over traditional
methods will nevertheless remain contentious if the longstanding bat-
tle over the Precautionary Principle is at all representative. One can
only hope that the added flexibility equivalence testing offers will al-
low this debate to evolve, as it will afford direct comparisons between
traditional methods and a statistically valid alternative that is consis-
tent with the Precautionary Principle.

C. The Limits of Frequentist Methods and the Precautionary Principle

Equivalence testing is ultimately only a partial response to the dic-
tates of the Precautionary Principle. Frequentist methods support in-
ferences from discrete scientific studies (the second stage of our
framework) and are thus of limited value to integrated scientific deter-
minations.?5® Consider an example in which the results of two experi-
ments on a chemical’s toxicity both satisfy a 95% significance level,
but their estimates of its toxicity differ markedly. Assume further that
one of the experiments involved dosing rats under controlled condi-
tions, while the other was a human epidemiological study for which
exposure levels could not be controlled as stringently. These experi-
mental differences prove critical because the data are not directly
comparable, i.e., they are not commensurable. Statistical significance
will be irrelevant to how a scientist weighs the credibility of the two
studies and integrates their results to estimate the chemical’s toxicity.
To make an integrated (stage three) determination, a scientist under-
takes a qualitative assessment of how well each experiment was de-
signed and implemented.26® Accordingly, while statistical significance
serves an important purpose, its role in rigorously testing hypotheses
(i.e., gatekeeper) is removed from the final, third-stage scientific
judgment.261

This simplified example is directly applicable to the EPA’s pro-
cess for setting chemical toxicity levels under its Integrated Risk Infor-

2568 McBride, supra note 28, at 26.

259 See Hacking, supra note 33, at 111-13 (observing that frequentist statistical
tests do not resolve the question of how stringent a test must be in a given context and
thus cannot, on their own, be used to determine whether to reject or accept a given
scientific theory); see also Green, supra note 229, at 693-94 (discussing problems with
judges and juries limiting scientific analysis to “simple [statistical] screening devices”).

260 See FosTER & HUBER, supra note 82, at 33; Mavo, supra note 23, at 122-26;
Collins, supra note 30, at 336-37.

261 Mavo, supra note 23, at 375-77.



2004] SCIENTIFIC ACTIVISM AND RESTRAINT 559

mation System (IRIS) program.262 IRIS toxicological reviews are
designed to generate a consensus opinion on the potency of the toxic
chemicals the EPA regulates. The IRIS process assesses all of the avail-
able toxicological studies performed on a chemical.?6® When integrat-
ing the available data to arrive at a consensus opinion, scientists
consider a variety of experimental factors, such as whether the data
are derived from animal or human studies, the degree to which the
conditions for the experiments were controlled, assumptions made to
determine exposure levels, and any confounding exposures that could
bias the results.264 Statistical significance is independent of these con-
siderations—even poorly crafted or weak experiments can generate
statistically significant results.26> Thus, while a lower level of statistical
significance may permit scientists to consider more data, it provides
no guidance on the more important judgment of how the data are
assessed relative to each other or as a whole.266 This point is critical
because scientific judgments on the value of specific experimental re-
sults “count most, not some meeting of, or failure to meet, an arbi-
trary level of statistical ‘significance.’”267

The Precautionary Principle clearly is not limited to stage-two in-
ferences from discrete experiments, or interpreted solely in terms of
relative error rates and frequentist significance testing. Although it is
often described in frequentist terms, the Precautionary Principle is
targeted at scientific judgment generally.26® Indeed, advocates of the
Precautionary Principle consider its singular virtue to be that it is “im-
perfectly translatable into codes of conduct,” and thus is resistant to

262 See Envil. Prot. Agency, What is Iris?, at http://www.epa.gov/iris/intro.htm
(last updated July 8, 2003), for the EPA’s description of the IRIS program.

263 A chemical’s “reference dose” is the highest dose for which its toxic effects are
not observed, corrected for uncertainties in its derivation. The EPA uses potencies/
reference doses and modeling methods to calculate regulatory standards for each of
the chemicals it regulates. As such, the IRIS toxicological reviews provide the final
toxicological information used by the EPA to calculate regulatory standards for toxic
substances.

264 See, e.g., BREYER, supra note 20, at 43—44; Green, supra note 229, at 649-53;
Wagner, Toxic Risk Regulation, supra note 5, at 1621-27.

265 See supra Part 11.C (noting that the early Mendelian and biometrics experi-
ments are just two examples).

266 See Mavo, supra note 23, at 313 n.8 (noting that the exclusion of nonsignificant
results actually creates a bias in the scientific literature because negative results are
often not reported and thus not considered in meta-analyses of multiple experimental
studies); Collins, supra note 30, at 337.

267  See Collins, supra note 30, at 337.

268 See Barrett & Raffensperger, supra note 187, at 115-20; Jordan & O’Riordan,
supra note 188, at 16-19.
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expert co-option.?%® Formulated in this manner, however, the Precau-
tionary Principle risks compromising legal and scientific procedures
by treating obscurantism as a virtue necessary to counteract expert
authority. The underlying premise is a familiar one, namely, that all
“research priorities, data, and conclusions are shaped by social con-
texts and values.”?7° In short, because environmental science is quali-
fied by uncertainties and thus subject to value judgments, the
Precautionary Principle should direct all scientific determinations.27!

Probably the most common criticism of the Precautionary Princi-
ple is that it risks advancing a model for scientific inference that lacks
both objective measures and quantitative clarity.272 This vagueness is
not, however, unique to the Precautionary Principle, but instead is a
general feature of efforts to formulate interpretive principles based on
broad fundamental principles or rights.2’3 For conservative or proce-
durally oriented legal scholars, reliance on fundamental rights (e.g.,

269 Jordan & O’Riordan, supra note 188, at 15-16 (noting that the Precautionary
Principle does not have “much coherence other than it is captured by the spirit that is
challenging the authority of science, the hegemony of cost-benefit analysis, the
powerlessness of victims of environmental abuse, and the unimplemented ethics of
intrinsic natural rights and intergenerational equity”).

270 Barrett & Raffensperger, supra note 187, at 116; see also R. Michael M’Gonigle,
The Political Economy of Precaution, in PROTECTING PusLIC HEALTH & THE ENVIRONMENT,
supra note 85, at 123, 129-30.

271 The presumption that science is inseparable from social factors is a highly de-
batable one. See, e.g., GaskiNs, supra note 83, at 161-62; LAUDAN, supra note 30, at
104, 201-02. The environmentalists’ argument is a non-sequitur. Environmentalists
demonstrate the uncertainties in science and then employ these arguments to show
that values must fill the gaps. The problem is that they never demonstrate that the
choice is necessarily limited to either science or social values.

272 See, e.g., Daniel Bodansky, Scientific Uncertainty and the Precautionary Principle,
ENVIRONMENT, Sept. 1991, at 4-5 (asserting that “the precautionary principle . . . is
too vague to serve as a regulatory standard”); Kenneth R. Foster et al., Science and the
Precautionary Principle, 288 ScieNce 979, 979 (2000) (“[The Precautionary Principle’s]
greatest problem, as a policy tool, is its extreme variability in interpretation.”); Mark
Geistfeld, Reconciling Cost-Benefit Analysis With The Principle That Safety Matters More
Than Money, 76 N.Y.U. L. Rev. 114, 174-76 (2001) (“The vagueness of the precaution-
ary principle provides ample room for disagreement, making it hard to justify regula-
tions based on the principle.”); John Lemons et al., ‘The Precautionary Principle:
Scientific Uncertainty and Type I and Type II Errors, 2 Founp. Science 207, 210 (1997)
(claiming that the Precautionary Principle is not “concrete enough” to allow for con-
sistent implementation); Sheila Jasanoff, A Living Legacy: The Precautionary Ideal in
American Law, in PRECAUTION, ENVIRONMENTAL SCIENCE AND PREVENTATIVE PuBLIC PoL-
1cy 227, 229 (Joel A. Tickner ed., 2003) (“Critics charge not only that [the Precaution-
ary Principle] is too vague to be useful, but also that it rejects science and threatens
innovation.”).

273 Evy, supra note 14, at 50 (“*‘[A]ll theories of natural law have a singular vague-
ness which is both an advantage and disadvantage in the application of the theories.’
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privacy or equality) in judicial review exemplifies this kind of ap-
proach.27¢ Objections to the Precautionary Principle do not differ in
substance from those raised in the judicial context: the Precautionary
Principle is used to guide scientific judgment just as fundamental
rights are used to resolve interpretive ambiguities in constitutions and
to guide judicial review generally.27>
The deficiencies of a rights-based, or natural law, approach to ju-
dicial review have been enumerated many times. John Hart Ely pro-
vides one of the most deft and clear critiques:
[T1he only propositions with a prayer of passing themselves off as
“natural law” are those so uselessly vague that no one will notice—
something along the “No one should needlessly inflict suffering”
line. “[A]ll the many attempts to build a moral and political doc-
trine upon the conception of a universal human nature have
failed . . . . [They] are too few and abstract to give content to the
idea of the good, or they are too numerous and concrete to be truly
universal. One has to choose between triviality and
implausibility.”276
The same uncertainties arise with the Precautionary Principle:
“While it is applauded as a ‘good thing,” no one is quite sure about
what it really means, or how it might be implemented.”??? The chal-
lenges of applying the Precautionary Principle are in fact potentially
more acute, as environmental policymaking is already rendered diffi-
cult by the technical nature of the underlying scientific determina-
tions. Moreover, insofar as proponents of the Precautionary Principle
accept as dogma that science is unavoidably infused with value judg-
ments, the potential for science to resolve uncertainties will be under-
valued or ignored.278

The advantage, one gathers, is that you can invoke natural law to support anything
you want. The disadvantage is that everybody understands that.”) (citation omitted).

274 Id. at 48-49.

275 See Jordan & O’Riordan, supra note 188, at 16 (characterizing the Precaution-
ary Principle as implementing the “ethics of intrinsic natural rights and intergenera-
tional equity”); Santillo et al., supra note 191, at 46 (noting that the Precautionary
Principle is “an overarching principle to guide decision making in the absence of
analytical or predictive certainty”).

276 ELv, supra note 14, at 51-52 (citations omitted).

277 Jordan & O’Riordan, supra note 188, at 22 (noting that critics “claim its popu-
larity derives from its vagueness”).

278  See Barrett & Raffensperger, supra note 187, at 115 (“[R]esearch methods, the-
ories, and empirical bases in ecology, as well as in more reductionist sciences, are
underdetermined. As a result, isolated scientific disciplines cannot provide a strong
basis for environmental policy.”). See Part I.C for an opposing argument.
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The problem with this critique is that it also applies to science.
As Kuhn and others have shown, science consists of a mix of rigorous
techniques and broad principles. Kuhn refers to the balance between
them as “the essential tension” in good science.?’® These broad scien-
tific principles (e.g., simplicity, consistency, and breadth) are not de-
monstrably more or less vague than the Precautionary Principle.
Scientists, for example, seek to elaborate theories that are both inter-
nally consistent and consistent with existing data, but this ideal is
fraught with uncertainties and ad hoc qualifications because no scien-
tific theory is ever without contrary data.280 Consistency thus becomes
a matter of degree, but developing a coherent measure is complicated
by the fact that competing theories will be consistent with different
data. The different empirical support for competing theories makes it
far more difficult to ascertain which of them is the “more consistent”
because one ends up having to make judgments that amount to com-
paring apples and oranges. Objecting to the Precautionary Principle
because of its vagueness is therefore self-defeating, for it implicitly
condemns established scientific principles as well.

The basic sentiment behind the Precautionary Principle—consid-
eration of the nature, uncertainties, and potential magnitude of the
risks implicated in a scientific analysis—is not inherently antiscientific.
Established scientific methods like statistical significance (and equiva-
lence) testing, for example, contemplate a precautionary approach
that considers the risks at issue in an experimental study.28! Many
advocates of the Precautionary Principle, however, have much more
grandiose objectives, such as curing science of its reductionist bias and
democratizing how science is practiced.?®? Indeed, some “strong con-

279  See supra Part 11.B.

280  See supra Part 11.B.

281  See supra Part II1.B.

282  See Barrett & Raffensperger, supra note 187, at 115-17 (“In the precautionary
model, scientists act as co-problem solvers in a broad community of peers. This com-
munity extends not only beyond the boundaries of individual disciplines but also be-
yond the traditional boundaries of the scientific community.”); Joel A. Tickner, The
Role of Environmental Science in Precautionary Decision Making, in PRECAUTION, ENVIRON-
MENTAL SCIENCE AND PREVENTATIVE PuBLIC PoLicy, supra note 272, at 3, 16 (“To sup-
port precautionary decision making, the current fragmentation and narrow focus of
science and policy will need to be dissolved, allowing a much broader framing and
examination of questions.”). It is worth remembering that Thomas Kuhn'’s theory of
science was not an endorsement of scientific relativism. Kuhn’s belief in science was
grounded in the workings of normal science, which is an expert-community model,
not a fully democratic one. Se¢ supra Part I1.B. Kuhn understood that the singular
virtue of science is that it sometimes does generate methods for objectively substanti-
ating facts-—despite universal theories remaining elusive. Id.
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ceptions” of the Precautionary Principle restrict scientists to “a very
limited role in decision making.”?8% These stronger versions of the
Precautionary Principle raise more difficult questions insofar as they
propose radical departures from existing scientific methods and
processes. The heavy ideological baggage that often attends the Pre-
cautionary Principle provides further grounds for being circum-
spect.?28*  As in the balancing of scientific and political processes
described in Part II.B, important tradeoffs exist between maintaining
the integrity of scientific processes and addressing the objectives of
these stronger versions of the Precautionary Principle.

The Precautionary Principle is a prominent example of how the
public, lawyers, and scientists are struggling to define the appropriate
scope of their respective roles in environmental policymaking. Part II
of this Article focused on scientific methods and regulatory models
relevant to stage-one quantitative judgments. This Part has discussed
some of the limits of scientific methods by exploring important sys-
temic biases and interpretive constraints found in frequentist statisti-
cal methods. I have proposed equivalence testing as a technical
response to the bias of traditional frequentist methods, but it cannot
address the subsequent stage-three judgments that ultimately must be
made. Because significance testing does not quantify directly the
probability that a hypothesis is valid, qualitative judgments—not quan-
titative assessments—of the support for a hypothesis must be made
following a finding of statistical significance. The need for, and diffi-
culty of making, these qualitative judgments is central to Bayesian crit-
icisms of frequentist methods. Bayesian methods offer an alternative
methodological approach to defining, and arguably broadening, the
role of scientific expertise in environmental policy.

IV. FREQUENTIST AND BAYESIAN METHODS: COMPETING MODELS FOR
INTEGRATING EXPERT JUDGMENT INTO
ENVIRONMENTAL SCIENCE

This final Part brings together the scientific and legal debates. It
begins with a discussion of the opposing Bayesian and frequentist po-
sitions advocated by scientists, drawing initially on the models pro-
posed by Breyer and Wagner, respectively. Part IV.A then provides a
brief introduction to Bayesian methods, which is followed by a cri-
tique and more detailed comparison of frequentist and Bayesian
methods in Part [V.B. The legal debate reenters the discussion in Part
IV.C, where I propose a model for structuring scientific judgment that

283 Jordan & O’Riordan, supra note 188, at 25, 30-31.
284 See id.
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exploits the parallels between the competing scientific and legal
frameworks. However, the scientific and legal debates differ in one
critical respect: the dispute among scientists is not divisible into the
traditional antiregulatory and pro-environment political camps. Well
known environmental scientists, for example, are ardent advocates of
Bayesian methods, which complement the expert model of environ-
mental decisionmaking advocated by Breyer and uniformly criticized
by environmentalists. This undercutting of the existing political divi-
sions is part of the appeal of linking the legal and scientific debates.

The dispute among scientists over Bayesian and frequentist meth-
ods can be understood through the lens of the proposals advocated by
Justice Breyer and Professor Wagner discussed in Part II. Like the
scientists debating statistical methods, both Breyer and Wagner are
concerned about the proper role of scientific judgment in drawing
inferences from limited scientific information. Breyer adopts a Baye-
sian approach by delegating broad authority to scientific experts for
setting administrative standards and regulations. As described in Part
I, Bayesian methods require that expert judgment be quantified and
integrated directly into the analysis—the starting point for all Baye-
sian analyses is a judgment about the relative probability of the hy-
potheses being evaluated. Bayesians do not fixate on objective
experimental methods, but opt instead to ground their methods on
expertise and logical rules.?®> Like Breyer, Bayesians do not attempt
to distinguish science from policy; Bayesian methods seamlessly mix
judgment and experimental data together to derive the conditional
probability (i.e., conditional on data and judgment) that a hypothesis
is true.

Wagner’s approach is frequentist in its procedural detail, commit-
ment to transparency, and skepticism about expert judgment. Recall
that the centerpiece of Wagner’s proposal was requiring agency ex-
perts to distinguish the science from the trans-science, or science from
policy judgments.286 ‘While frequentism does not distinguish between
science and trans-science, it adopts an analogous approach by separat-
ing the formal statistical analysis of experimental data from scientific
judgment, that is stages two and three of the framework discussed in
the Introduction to this Article.?8?” However, neither Wagner nor fre-

285  See supra Part I; infra Part IV.A.

286  See supra Part 1LA,

287 Frequentism is not simply a collection of mathematical techniques for analyz-
ing data; it incorporates a philosophy of scientific method similar to Popper’s critical
mode of inquiry. See Mavo, supra note 23, at 13-17; Dennis, supra note 23, at 1100.
However, instead of developing severe tests for particular hypotheses, frequentists
have adopted a set of experimental rules (e.g., randomization, control groups, 95%
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quentism denies the importance of scientific judgment. Both instead
adopt formal procedures for separating objective inferences from sub-
jective judgments. Frequentism accomplishes this by quantifying how
well a test hypothesis predicts experimentally observed results, which
scientists use, along with a variety of qualitative factors, to judge the
validity of their test hypothesis. Wagner, however, does not propose
an analytic framework, but, somewhat circularly, relies on the judg-
ment of scientific experts and judges to distinguish science from pol-
icy. Nevertheless, Wagner’s proposal and frequentist methods share
the same philosophy: Objective facts should be separated from subjec-
tive judgments to maximize the transparency and verifiability of the
determinations.

The debate among environmental scientists over frequentist and
Bayesian methods is hotly contested and intensifying. Frequentists ob-
ject to Bayesian techniques because they do not adhere to frequentist
conceptions of proper scientific methods. Frequentists warn that:

[Environmental scientists] should be aware that Bayesian methods
constitute a radically different way of doing science . . . . Bayesians
categorically reject various tenets of statistics and .the scientific
method that are currently widely accepted in ecology and other sci-
ences. The Bayesian approach has split the statistics world into war-
ring factions . . . and it is fair to say that the Bayesian approach is
growing rapidly in influence.?88

Frequentists, as it turns out, have good reason to fear that Baye-
sian methods will become more important in environmental sci-

significance levels) to ensure that tests are severe and transparent. See MAvo, supra
note 23, at 4-7, 12-13, 16-17. Frequentist experiments also are designed to minimize
Popper’s problem with auxiliary hypotheses by “isolat[ing] the effect of interest so
that only a manageable number of causal factors (or types of factors) may produce
the particular experimental outcome.” Id. at 15. These rules provide standard meth-
odological tools that ensure experiments are adequately controlled. Scientific objec-
tivity is maximized by limiting scientific bias and making error rates a critical measure
of scientific validity. Frequentists use statistical error as a basis for accepting experi-
mental results “‘because they are confident that error ramifies. If the hypotheses that
they are accepting in order to attack new problems are mistaken, the results of re-
lated, though partially independent, research are likely to signal that something is
wrong.”” Id. at 41-42 (quoting Davip HuLL, SCIENCE As A PROCESS: AN EVOLUTIONARY
ACCOUNT OF THE SoCIAL AND CONCEPTUAL DEVELOPMENT OF ScIENCE (1988)). Fre-
quentists seek to minimize bias by “remov([ing] the scientist’s beliefs from the conclu-
sions as much as possible and let[ting] the data do the talking.” Dennis, supra note
23, at 1100.
288 Dennis, supra note 23, at 1095.
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ence.?8? It was not until new computational methods became
available in the late 1980s that Bayesian methods began to receive sig-
nificant attention from environmental scientists,??° and packaged pro-
grams made available through new computational methods are
making Bayesian methods increasingly accessible.?9!

Bayesian advocates are no less committed to their approach and
its significance to environmental science.?°2 They argue that it is ab-
surd to assume that policymakers will have the expertise necessary to
interpret frequentist statistics, which require a detailed understanding
of the experimental methods and science to determin€ the weight ex-
perimental findings should be accorded.?®>” A frequentist working on
global change research, for example, would be limited to supplying
policymakers with statistically significant results on one or more scena-
rios for global warming, each of which would be supported by a multi-
plicity of experimental and observational data. Moreover, pursuant to
the frequentist philosophy of letting the data tell the story, the scien-
tist would not indicate which of the scenarios he or she believes is the
most probable; this judgment would be left to the policymaker. In
contrast, a Bayesian analysis would generate relative probabilities for
each of the scenarios based on expert judgment and the available
data. Policymakers could inquire about and challenge the methods
used and bases for the scientific judgments, but would not be required
to interpret the data de novo.

Bayesians challenge the viability of frequentist methods in envi-
ronmental science and laud the clarity of Bayesian results:

Serious doubts have been raised about the utility of abstract, gen-
eral theories that have been shown repeatedly to have little predic-
tive value in field or laboratory situations. . . . Bayesian statistical
inference can be used to estimate ecologically meaningful parame-
ters and provides an explicit expression of the amount of uncer-
tainty in these parameter estimates.?94

The essence of this debate turns on two practical concerns: the
credibility of science, which frequentist fear is compromised by Baye-

289  See Malakoff, supra note 23, at 1460-61 (noting that using the Bayesian
method enables researchers to achieve results not easily obtainable using the frequen-
tist method).

290 Brian Dennis, Statistics and the Scientific Method in Ecology, in THE NATURE OF
ScienTiFic EVIDENCE (M.L. Taper & S.R. Lele eds., forthcoming 2004) (manuscript at
20, on file with author).

291 Malakoff, supra note 23, at 1460-61.

292  See Schneider, supra note 23, at 18.

293  See id. at 18-19.

294 Ellison, supra note 23, at 1036-37.
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sian methods;?°> and the ability of environmental science to provide
meaningful information for policymakers, which Bayesians fear fre-
quentist methods preclude.?%® It also involves two competing models
of science: the Bayesian model structured around preliminary scien-
tific judgments and logical rules, and the frequentist approach pre-
mised on rigorous testing and an objectivist approach to statistical
analysis.

Bayesians have encountered significant opposition from environ-
mental scientists who believe that Bayesian methods threaten the ob-
jectivity of environmental science by incorporating subjective
judgments. The issue at the center of this dispute is the normative
authority of environmental science, particularly as it pertains to envi-
ronmental policymaking. Frequentists believe the authority of envi-
ronmental science depends on its objective credentials; Bayesians
assume that it is derivative of the good judgment of scientists them-
selves. To urge the acceptance of Bayesian methods in environmental
science, Bayesians rely on two central arguments: (1) Bayesian meth-
ods generate objective results because scientists’ estimates converge as
more evidence is collected, and (2) frequentist methods are ill suited
to the needs and constraints of environmental science and policy.
These arguments will be discussed following a brief explanation of
Bayesian methods. This Part concludes by proposing a new model for
effectively integrating scientific judgment into environmental
policymaking.

A.  Bayesian Statistical Inference in Practice

The foundational principle of Bayesian, or belief-type, probability
is that information should be incorporated into decisionmaking pur-
suant to the logic of Bayes’s theorem.?°” Reverend Thomas Bayes’s
approach to statistical inference is particularly novel because it can be
applied even when one begins with no information about the proba-
ble outcomes of a decision. If I have several competing hypotheses
about the toxicity of a chemical (e.g., the chemical is benign, harmful
only at high doses, or harmful at any level of exposure) but no starting
data, Bayes postulated, in effect, a Cartesian starting point from which

295 See Dennis, supra note 23, at 1099-100 (“I object to calling [Bayesian esti-
mates] science. Science is not about decisions; science is about making convincing
conclusions. . . . [T}he Bayesian philosophy of science is scientific relativism.”).

296 Ellison, supra note 23, at 1036-38.

297 HackiNg, supra note 12, at 172-77. The principal question for Bayesian analy-
sis “is whether we are reasonable in modifying these opinions in the light of new
experience, new evidence.” Id. at 256-57.
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to incorporate inductively new information and to infer logically
which of the competing hypotheses is most probable.2°8 Bayesian the-
orists view probability in two distinct ways, logically and subjectively.299
The two theories will be treated together because they draw on the
same principles and methods.

A crucial aspect of Bayesian methods is the initial scientific judg-
ment from which the analysis starts. This judgment reflects a scien-
tist’s understanding of the system being studied and must be reduced
to a “prior distribution,” which represents the distribution of
probabilities assigned to the set of hypotheses or events being consid-
ered.3%® The prior distribution, for example, of a coin assumed to be

298 It should also be noted that frequency-type information is routinely used as a
basis for belief-type probability. Id. at 137.

299 Id. at 146-47. Logical belief-type probability is defined objectively in terms of
logical relations between evidence and propositions, such that a proposition’s
probability is evaluated relative to the available evidence. Id. at 142-43; Ian Hacking,
The Theory of Probable Inference: Neyman, Peirce and Braithewaite, in SCIENCE, BELIEF AND
BEHAVIOUR 141, 142-44 (D.H. Mellor ed., 1980). Restated more formally, “any body
of evidence e uniquely determines a probability for any hypothesis 4,” such that c(h,e)
= degree to which e confirms A HAckING, supra note 32, at 148. This approach has a
distinctly legal character, having been variously described as the degree of reasonable
belief in or credibility of a proposition conditioned on the available evidence. See
Hacking, supra note 33, at 190-91, 194, 202; HackING, supra note 32, at 13, 43, 85-87,
134-36.

By contrast, subjective belief-type theorists define probability as a subjective esti-
mate of the likelihood that an event will occur or theory is true. See HACKING, supra
note 33, at 148, 208-09, 213-14. This radically subjective approach presumes that
individuals arrive at personal estimates on whatever bases they choose. See id. at 190,
194. Subjectivism denies (in a variant of idealism) that probability exists as a property .
independent of individual subjective consciousness, and in so doing purports to avoid
Hume’s induction problem. HACKING, supra note 12, at 256-60; MUSGRAVE, supra
note 116, at 146-47. Accordingly, where the logical theory turns on evidentiary sup-
port, the subjective theory considers “betting rates” (i.e., individual judgments consti-
tute the relevant data) to resolve personal estimates regarding an event or hypothesis.
See HACKING, supra note 33, at 191-93, 202. If a person is “rational,” his betting rates
will satisfy the logical axioms of belief-type probability theory. See id. at 208-09. The
central rule is the following: “The probability of any event is the ratio between the value
at which an expectation depending upon the happening of the event ought to be
computed, and the value of the thing expected upon its happening.” Id. at 192. The
probability, P(*), of an event is defined in the following terms: P(*) = [contingent expec-
tation value of a thing (“fair stake”)] / [value of the thing expected when it occurs (“prize”)]. Id.
at 192-94. The “fair betting rate” = fair stake / prize = P(E), where Eis a contingent event
upon which the expectation is based. Id. Subjectivists assume that a fair betting rate
is independent of the prize’s size—i.e., that the relations are mathematically linear.
See id. at 96-97.

300 HackiNg, supra note 12, at 173-74. A prior distribution may involve two hy-
potheses or events (e.g., a chemical is either harmful or not) or a number of them
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fair would distribute the total probability evenly between heads and
tails, i.e., 50% for a toss coming up heads and 50% for tails. A prior
distribution also may be a continuous function and can take on a wide
variety of mathematical forms—although, more complex distributions
may complicate Bayesian calculations. The prior distribution, for in-
stance, of a chemical’s toxicity could be a simple normal distribution
centered around the toxicity level a scientist believes is the most prob-
able. Where a prior distribution is well circumscribed by existing sci-
entific knowledge, judgments about it will likely be relatively
consistent and uncontested. As a practical matter, however, scientists
often differ substantially in their judgments (influenced by personal
biases or specific experiences) regarding the appropriate prior distri-
bution for a specific system.301 The discussion that follows begins with
a brief explanation of Bayes’s theorem and then turns to Bayes’s pos-
tulate and the strengths and limitations of the Bayesian approach.

1. Derivation and Logic of Bayes’s Theorem

Bayes’s theorem is the unifying logical formula that governs Baye-
sian statistical inference.?°? The derivation of Bayes’s theorem follows
directly from the three fundamental axioms of probability theory and
the definition of “conditional probability.”3%3 For Bayes’s theorem to

(e.g., a chemical is benign, it has a threshold below which it is not harmful, it is
harmful and harm increases linearly with exposure, or it is harmful and harm in-
creases exponentially with exposure) depending on the circumstances.

301 SeeMavo, supra note 23, at 75-77, 119-20. For example, a toxicologist working
for a pesticide manufacturer is likely to have a very different understanding of an
industrial chemical’s biological activity than a toxicologist working for an environ-
mental organization, and this understanding will be reflected in their judgment about
a prior distribution.

302 See HACKING, supra note 33, at 190.

303  See supra note 33. Conditional probability is the probability of an event condi-
tioned on another event occurring, such as the likelihood of rain under certain at-
mospheric conditions. HACKING, supra note 33, at 14, 59. The probability of A
occurring conditioned on the occurrence of B, that is P(A / B), is defined to be
P(A&B) / P(B). See id. at 127. Conditional probability satisfies Kolmogoroff’s first ax-
iom, 0< P(A / B) < 1, because the probability of Band A occurring cannot exceed the
probability of B occurring on its own. The conditional probability of A relative to B,
P(A / B), is thus defined as the probability of A and B occurring together, “normal-
ized” (i.e., transformed onto a scale from 0 to 1) relative to the probability of Boccur-
ring on its own.

The definition of conditional probability also implies that P(A) = P(B)P(A / B) +
P(~B)P(A / ~B), where ~B is definedas B does not occur. For hypotheses A and B
that are mutually exclusive and exhaustive, the derivation is as follows: First, it follows
from A and B being mutually exclusive and exhaustive that P(A) = P(A&’B) + P(A +
~B)—all cases of A occurring are covered by circumstance under which either B oc-
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apply, however, the hypotheses being evaluated must satisfy two condi-
tions: first, they must be mutually exclusive, meaning only one hypoth-
esis can be true or only one event may occur; second, they must be
jointly exhaustive, meaning one of the hypotheses must be true or one
event must occur.3* Bayes’s theorem states that the probability of a
hypothesis H, such as it will rain today, conditioned on an event E,
such as news of diminishing barometric pressure, is simply the
probability of H prior to the new information, P(H), multiplied by the
“likelihood” of observing E if H is true.3%> Bayes’s theorem has the
following general form:

P(H;/ E) = PH)P(E / H;) / [EP(H,)P(E / H;)], for any set of mutu-
ally exclusive and exhaustive hypotheses H,, H,, H ..., H, where
P(H;) > 0 ftor each ¢ and P(E) > 0.30

The logical appeal and elegance of Bayes’s theorem are apparent
in the following standard example.3°7 Assume you have been selected
to be a juror in a case in which the plaintiff’s car was sideswiped by
another car on a misty winter night. The sole witness to the collision
claims she observed a blue cab collide with the plaintiff’s car and then
drive off. You also learn that there are only two taxi companies in the
town, Green Cabs, Ltd., which owns only green cabs and operates 85%
of the cabs in town, and Blue Taxi, Inc., which owns only blue cabs
and operates 15% of the cabs in town. Finally, you are informed that
the witness selected the correct color of car, whether green or blue,
80% of the time when tested under conditions similar to those during

curs or B does not occur. Using the definition of conditional probability, substitute
P(A / B)P(B) and P(A / ~B)P(~B) for P(A&B) and P(A + ~B), respectively, to obtain
P(A) = P(B)P(A / B) + P(~B)P(A / ~B), also known as the rule of total probability. For
any mutually exclusive and exhaustive set of hypothesis H,, H,, H;, .. ., H, for which
P(H;) > 0 for each i, this rule generalizes as follows: P(H;) = 2P(H)P(E / H).

304 HAckING, supra note 12, at 70.

305 See HACKING, supra note 33, at 190-91.

306 EARMAN, supra note 31, at 33-35. The derivation is relatively straightforward:
Starting with P(H + E) = P(E + H), multiply the left side by P(E) / P(E) and the right
side by P(H) / P(H) to obtain P(H + E)P(E) / P(E) = P(E + H) P(H) / P(H). Next, using
the definition of conditional probability, substitute P(H / E) for P(H + E) / P(E) on the
left side and P(E / H) for P(E + H)} / P(H) on the right side to obtain P(H / E)P(E) = P(E
/ H)P(E), which becomes P(H / E) = P(E / H)P(E) / P(E). Finally, using the rule of total
probability substitute P(H)P(E / H) + P(~H)P(E / ~H) for P(E) to obtain Bayes’s theo-
rem for the simplest system of a binary set of exhaustive hypothesis (e.g., a coin is fair
or unfair): P(H / E) = P(E / H)P(E) / [ P(H)P(E / H) + P(~H)P(E / ~H)]. Bayes’s theo-
rem generalizes as follows: P(H;/ E) = P(H)P(E/ H}} / [ ZP(H)P(E / H,)], for any set of
mutually exclusive and exhaustive hypotheses H,, H, Hj, . .., Hy for which P(H;) > 0
for each i and where P(E) > 0. HACKING, supra note 12, at 58-62, 70.

307 HAcKING, supra note 12, at 72-73.
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the night of the accident. As a juror, you want to determine the
probability that the witness’s account of the collision is correct.

Bayes’s theorem may be used to integrate this information. As-
suming that the car involved was a cab, the mutually exclusive and
exhaustive set of scenarios (hypotheses) are that the cab was blue, B,
or that the cab was green, G. In this example, you are given the prior
distribution, namely, the relative likelihoods of randomly encounter-
ing a green cab, P(G), and a blue cab, P(B), which are 0.85 and 0.15,
respectively. In addition, you know the probability that the witness’s
observation is correct, P(W, / B), is 0.80 (implying that P(W, / G) =
0.20), where W, identifies the witness as observing a blue cab. Bayes’s
theorem may be used to determine the probability of the cab being
blue based on the witness’s statement as follows:

BB/ W,) = P(B)P(W, / B) / [P(B)P(W, / B) + P(G)P(W, / G)]

(0.15x 0.8) / [(0.15x 0.8) + (0.85x 0.2)] = 0.41
PB/ W,) =041
PG/ W)=1-PB/W,)=1-041=0.59

The determination that it is more likely that the cab is green
(569% probability) than blue (41% probability) is counterintuitive for
many people. The result, however, follows directly from the fact that
85% of the cabs on the road are green. The significance of the rela-
tive numbers of blue and green cabs becomes evident if you consider
it in the context of testing the witness’s observational accuracy. As-
sume that this testing required the witness to make one hundred ob-
servations. Based on the relative numbers of green and blue cabs,
approximately eighty-five of the observed cabs are green and fifteen
blue. The witness’s observations, however, are correct only 80% of the
time, implying that of the eighty-five green cabs, she observes about
sixty-eight as green and about seventeen as blue, and of the fifteen
blue cabs, she observes about twelve as blue and about three as green.
Adding these results together, the witness therefore observes twenty-
nine cabs as blue, but only twelve (or about 41%) of the cabs are in
fact blue. In this example, the relative numbers of the blue and green
cabs offset the relatively high accuracy of the witness.

The cab example involves a very simple system for application of
Bayes’s theorem. It satisfies precisely the basic requirements for
Bayes’s theorem to hold: the potential options are mutually exclusive,
cabs are blue or green (not both), and exhaustive, each cab is either
blue or green (not some other color).3%8 Perhaps most importantly,

308 This analysis implicitly rejects (i.e., sets their probabilities at zero) other hy-
potheses, such as that the defendant’s car was not a cab, thereby irreversibly exclud-
ing them from the analysis.
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the prior distribution is provided by the data, obviating any need for
judgment by the juror. Few, if any, real world situations neatly meet
these conditions.30? In particular, as Popper demonstrated, scientists
cannot be certain that their set of hypotheses is complete.?!® These
epistemic limits necessitate that a number of conventional rules be
employed to resolve uncertainties and to make Bayes’s theorem work-
able.?'"! The next subsection discusses Bayes’s postulate and the limits
of Bayesian analysis when confronted with such practical constraints.

2. Bayes’s Postulate and the Limits of Bayesian Analysis

According to Bayes’s postulate, Bayes’s theorem may be used to
incorporate experimental evidence inductively and to infer the rela-
tive probabilities of any set of mutually exclusive and exhaustive hy-
potheses or events.3'? When starting with near or complete
ignorance, Bayes determined that a uniform prior distribution, mean-
ing all hypotheses or events are given the same starting probability,
should be used.?!? This strategy is analogous to assigning a one-sixth
probability to each face of a die when no basis exists to believe that
the die favors one side over another. For a variety of reasons, Baye-
sians are criticized for their reliance on such uniform distributions as
a justifiable starting point for Bayesian analysis.3'* More importantly,
even where information exists, scientists often have divergent views on
what the prior distribution should be. Take the example of a Bayesian
analysis of contaminant levels in a river. An environmentalist would
likely adopt a precautionary approach by assuming, for instance, that

309 EarMAN, supra note 31, at 140-41, 148-49.

310  See supra Part I1.B.; HACKING, supra note 33, at 223-25. Moreover, for subjectiv-
ists, it is not at all clear what it means to “bet” on a hypothesis, which in all but the
most trivial cases will not be conclusively verifiable. See id. at 215.

311 Among the most important conventions is the assumption of linear scaling,
which ignores certain indeterminacies in choosing different scales and runs contrary
to economic and sociological data. See EARMAN, supra note 31, at 17; HAckING, supra
note 33, at 171-72, 199-201, 210; Mavo, supra note 23, at 90.

312 It is worth noting that, despite the dubious status of positivism, Bayes’s postu-
late is based on a positivist approach to scientific progress. Se¢e EARMAN, supra note 31,
at 63-64.

313  See HACKING, supra note 12, at 70, 141-44; HacKING, supra note 33, at 200-06.

314 See HACKING, supra note 33, at 202-04, 208-10; Mavo, supra note 23, at 75-76,
83-85. A common criticism, for example, is that such uniform distributions are arbi-
trary in their choice of how the data are scaled, such that a uniform distribution in
one coordinate system or scale may be highly nonuniform in a different one. See
HackING, supra note 33, at 202-04, 208. Certain theorists, most notably Ronald A.
Fisher, deplored Bayesians’ overreliance on starting uniform distributions. See Mac-
KEeNzig, supra note 160, at 208-10.
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the contaminants do not biodegrade rapidly, that they are not seques-
tered, and that river flow dynamics cause them to concentrate in cer-
tain areas. Industry scientists, in contrast, would likely begin with a
very different, less conservative set of assumptions to construct their
prior distributions. These kinds of subjective judgments are intrinsic
to Bayesian methods, and they cause scientists with different perspec-
tives to arrive at different starting prior distributions.

Bayesians have a simple response to such concerns: The starting
distribution is irrelevant because Bayesian analyses converge to the
most probable hypothesis irrespective of the starting distribution.3!5
In its fully idealized form, Bayes’s theorem, according to its propo-
nents, operates as follows:

It is of fundamental importance to any deep appreciation of the
Bayesian viewpoint to realize that the particular form of the prior
distribution expressing beliefs held before the experiment is con-
ducted is not a crucial matter. . . . For the Bayesian, concerned as

he is to deal with the real world of ordinary and scientific experi-

ence, the existence of a systematic method for reaching agreement

is important. . . . The well-designed experiment is one that will

swamp divergent prior distributions with the clarity and sharpness

of its results, and thereby render insignificant the diversity of prior

opinion.316

Bayesians in essence claim that given sufficient data, Bayes’s theo-
rem will produce objective results that are independent of initial esti-
mates of the probabilities for a set of starting hypotheses. It achieves
this objectivity by causing expert opinion to converge as more data are
collected, meaning at some point Bayesian assessments of any group
of experts would derive the same most-probable hypothesis. Thus, an
environmentalist and industry scientist may start with divergent esti-
mates of contaminant levels, but once sufficient data are collected,
their estimates will converge to the same value.

A relatively simple example of how Bayesian analysis is applied in
environmental science suggests that such convergence is far from
guaranteed and that prior distributions generally cannot be ignored.
Assume that a river is found to have been contaminated with copper
from an industrial plant and that ten samples with a mean value of
50.6 microgram/liter (ug/1) and variance of 25.0 pg/1 have been col-

315 EARMAN, supra note 31, at 57-58, 141-42.

316 Patrick Suppes, A Bayesian Approach to the Paradoxes of the Ravens, in ASPECTS OF
InnucTivE Locic 198, 204 (Jaakko Hintikka ed., 1966); see also FOSTER & HUBER, supra
note 82, at 121-24 (“In Bayesian terms: Prior probabilities (that is, initial guesses)
play smaller and smaller roles as new evidence accumulates.”).
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lected to test the concentration of copper in the water.?!” Bayesian
methods can be used to determine the probability that the mean con-
centration of copper in the river exceeds a federal regulatory standard
of, say, 46 pg/l.

To begin the analysis, the scientist, whom we will assume is an
employee of the plant, would specify a prior distribution delineating
the probabilities of a continuous range of mean copper concentra-
tions in the river.?!® For simplicity, we will assume that the scientist
judges that the prior distribution, P(H) above, is a normal distribution
with a variance of 4 pug/1 centered around a mean copper concentra-
tion of 20 pg/1 (i.e., a low estimate with a narrow spread of values).31?
The scientist would then use Bayes’s theorem to combine the sample
data with his prior distribution, which here would generate a most
probable mean concentration of ~36.1 pg/1.320 Analogous to the cab
example, the prior distribution in this case offsets the much higher
observed values and leads to a prediction that the federal standard is
not violated.??! Further, if another scientist were to start with a prior
distribution much closer to the sample value, convergence of the two
estimates would not be attained even with a significant increase in the
quantity of data—convergence is purely speculative.322

The water sampling example demonstrates that where a disparity
exists between a scientist’s prior distribution and observed values,
which may occur where data are of unknown quality, the prior distri-
bution will dominate the final result if data are limited. Accordingly,
the claim that well designed experiments will ensure that divergent
assessments of competing hypotheses will converge appears empty. It

317 Dennis, supra note 290 (manuscript at 6-7).

318 Id. (manuscript at 15-16). The prior distribution need not be a normal distri-
bution; its use here is solely to simplify the example.

319 Id. (manuscript at 15). Unlike the cab example, the pnor distribution in this
case is continuous across a range of potential contaminant levels, such that each con-
taminant level encompassed by the normal distribution constitutes a hypothesis for
the likely concentration of copper in the river and is given a discrete probability.
While mathematically more complex, the basic logic for applying Bayes’s theorem is
the same.

320 Id. (manuscript at 18). In this example, the expected value of the posterior
distribution was used for the predicted value.

321 For comparison, the equivalent frequentist estimate (i.e., using a null (normal)
distribution centered at 46 pg/1) would generate a 95% confidence interval that
ranged from 47 to 54 pg/l. Id. From this result, a frequentist would conclude that
the null hypothesis is false and that one can infer that the regulatory standard is being
violated.

322 In the paper from which this example was taken, the author estimates that a
Bayesian would have to collect more than six times the number of measurements
before concluding that the regulatory standard was violated. Id. (manuscript at 23).
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assumes, among other things, that such experiments exist and will be
accepted without controversy, as well as that all concerned will agree
on the hypotheses that should be considered. These constraints
markedly qualify the power of Bayesian analysis to provide objective
probability estimates for statistical inference.??® Part IV.B examines
these limitations in greater detail.

B.  Bayesian and Frequentist Methods in Environment Policy

Bayes’s theorem, according to its proponents, provides a rigor-
ously logical technique for attaining agreement among scientists on
the most probable of several competing hypotheses (e.g., the toxicity
of a chemical for a range of exposure levels).32¢ An obvious question
is how rapidly Bayesian analysis causes the opinions of scientists to con-
verge; in particular, if a large amount of data is required, agreement
may be foreclosed as a practical matter. Several requirements must be
met in order for Bayesian analysis to converge, but just two,
probability assignment and hypothesis selection, will be discussed
here.325 For purposes of this discussion, description of the other re-
quirements is unnecessary because the two selected factors amply illus-
trate the practical limitations of Bayesian methods.

The first requirement is that scientists assign a probability to each
of the hypotheses being evaluated.326 While this judgment may be
relatively straightforward for simple experimental systems, such as a
series of coin-lipping experiments, it becomes much more variable
and complex for nonuniform experimental information:

It is not just that different Bayesian agents will give different esti-
mates of rates of convergence but that there may be no useful way
to form the estimates. To form an estimate for a given [case] we
need to know what kind of evidence is received and also what bits
are received in what order . . . . [I]n the general case, the relevant
evidence can come in myriad forms, and within a form the order [in
which it is obtained] can matter critically.327

To understand why this is the case, it is helpful to consider why
simple experimental systems are distinctive. In a simple stochastic ex-

323 Examples include uncertainties in the additivity of probabilities and the limits
of strict conditionalism. See EARMAN, supra note 31, at 41; FOSTER & HUBER, supra
note 82, at 129-30. Note that for subjective Bayesians this is not a problem, as they do
not believe that objective probabilities can be obtained. See supra note 299.

324 Suppes, supra note 316, at 204.

325 EARMAN, supra note 31, at 139-42, 148-49.

326 Id. at 143, 148; B. Efron, Why Isn’t Everyone a Bayesian?, 40 Am. STATISTICIAN 1, 2
(1986).

327 EarmaN, supra note 31, at 148-49.
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periment, the only information that is relevant is the final tally of the
experimental observations, e.g., the number of heads versus tails for a
coin or the relative number of green and blue taxis in the earlier cab
example 328

Most experimental data are not uniformly equivalent and thus
cannot be simply added together like a sequence of coinflips, which
are simply reported as either heads or tails. In the case of a chemical
risk assessment, all available toxicological studies must be evaluated,
but few (if any) of them will have been conducted under identical
conditions. Experimental parameters will vary, including study type
(e.g., animal versus human, in vivo versus in vitro), exposure levels
and controls, and confounding variables that could bias the results.32°
For example, some data may derive from epidemiological studies of
exposed workers for which exposure conditions were poorly con-
trolled and inaccurately known; other testing may involve carefully
controlled animal studies, but the animal model may not be well justi-
fied.33¢ These differences preclude data from distinct experiments
being quantitatively inter-translatable. As a result, interpretation of
data from multiple experiments requires scientists to judge how data
from each experiment are to be weighted and integrated. Data will
therefore influence scientists’ opinions to different degrees and in
ways that depend on other information.?*! Consequently, because
many different paths will exist for information to be obtained, this
interpretive interdependence makes it impossible to predict when
Bayesian convergence of opinion will occur.

The second requirement for convergence is that scientists be
“equally dogmatic” at the outset, that is assign zero probability to (i.e.,
reject) the same candidate hypotheses.?32 Such agreement might be
attained by establishing “a rule of mutual respect that enjoins mem-
bers of a scientific community to accord a nonzero [probability] to
any hypothesis seriously proposed by a member of the community.”333
Indeed, this approach might be viable with a small group of scientists

328  See supra Part IV.AL.

329  See, e.g., Green, supra note 229, at 649-53; Wagner, Toxic Risk Regulation, supra
note 5, at 1621-27.

330 Experimental variability also is significant in climate change science, where
scientists must rely on climate measurements taken under a wide range of conditions
and using a broad variety of techniques. HARVEY, supra note 149, at 76-77; IPCC,
supra note 183, at 249. )

331 EARrRMAN, supra note 31, at 56, 149, 151-53. :

332 Id. at 142. Requiring equal dogmatism is also clearly contrary to Popper’s criti-
cal mode. Id. at 139, 148-49, 160; HACKING, supra note 12, at 181, 257; see supra Part
ILB.

333 EARMAN, supra note 31, at 142.
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working on an esoteric problem. It is difficult to imagine, however,
that one could convince the community of toxicologists, including
those working in industry, government, and nonprofits, to agree in
principle on such an approach. Industry scientists, for example,
might reject (i.e., assign zero probability to) a hypothesis that chemi-
cals are harmful even at extremely low levels, whereas environmental-
ists would rule out the hormesis hypothesis, which maintains that low-
level exposure to industrial chemicals can be beneficial. Bayesian
analysis requires that such differences be resolved up front. More-
over, even if it were possible to achieve such an agreement, you would
still encounter widely divergent interpretations of the available data,
which would make the likelihood of convergence of opinion at best
speculative. The rigor of Bayes’s theorem is therefore achieved at a
significant price, for it requires that all of the relevant theories be fully
~ elaborated and agreed to at the start.33*

The limited power of Bayes’s theorem to harmonize divergent
opinions magnifies the significance of a scientist’s starting prior distri-
bution in Bayesian analyses.3%®% The watersampling example
presented in Part IV.A.2 illustrated this problem. The industry scien-
tist’s prior distribution in that example lowered the estimated mean
contaminant level by almost 29% relative to the value for the collected
data.3%6 Scientists’ subjectively derived prior distributions are there-
fore bound to influence greatly, if not determine, the outcome of
Bayesian assessments in fields like environmental science where data
are often limited.*®*” Drawing on Thomas Kuhn’s work, a charitable
assessment of Bayesian methods might be that they have significant
value for normal science; however, even normal science generates
conflicting hypotheses and divergent opinions among scientists.338 It
is difficult not to conclude that the failed objectivity of Bayesian meth-
ods seriously undermines their utility.

Undeterred, Bayesians are quick to point out that frequentist
methods have important drawbacks, too. In particular, frequentist
methods can be ill suited to environmental science:

From an ecological perspective, there are many difficulties with {fre-

quentism]. Within experiments, true randomization is difficult,

334 Id. at 123-25; Efron, supra note 326, at 2.

335 [EarmaN, supra note 31, at 138.

336  See supra Part IV.A.2.

337 EARMAN, supra note 31, at 161. Some theorists have argued that this substan-
tive bias ought to be acknowledged up front and that debate over and development of
potential hypotheses should be integrated into the Bayesian program. See id. at
182-85, 198-203.

338 Id. at 172-73, 198.
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replication is often small, misidentified, or by virtue of circum-
stance, nonexistent. Ecological experiments rarely are repeated in-
dependently. No two organisms are exactly alike, and consequently
they are unlikely to respond to our treatment in exactly the same
way. Evolution virtually guarantees that even if they were alike to-
day, their offspring will be measurably different. Thus, the idea that
there is a true, fixed value [i.e., long-run frequency] for any ecologi-
cally meaningful statistical parameter is a Platonic phantom.339

These problems undoubtedly pose critical dilemmas for how fre-
quentist methods are applied and interpreted. It is less clear, though,
whether they justify abandoning frequentist methods for Bayesian
analysis. Bayesians typically make arguments about the logical rigor of
Bayesian analysis, as well as its ability to handle many types or even
small amounts of data.?*® While it is difficult to argue against logic,
this virtue is not realized without its attendant costs. Bayesian logic
requires that candidate hypotheses be mutually exclusive and exhaus-
tive and that scientists agree on the hypotheses that will be consid-
ered. These requirements are problematic for environmental science,
which is often speculative and hotly contested. Furthermore, the
value of rigorous inductive logic under these circumstances is less
compelling, as it risks meaning little more than being consistently
wrong. Simple deductive or inductive logic on its own, as Popper and
Kuhn showed, does not guarantee good science.?*!

Bayesian environmental scientists argue most passionately about
the power of Bayesian methods to generate clear quantitative data,
which they believe are essential if environmental science is to be used
effectively in policymaking.?#? Bayesian advocates, such as Dr. Ste-
phen Schneider (mentioned in the Introduction) argue “that policy
analysts need probability estimates to assess the seriousness of the im-
plied [environmental] impacts; otherwise they would be left to work
out the implicit probability assignments for themselves.”34® Bayesians
claim, and apparently believe, that policymakers should concur, that it
is better “to put more trust in the probability estimates of [environ-
mental scientists] —however subjective—than those of the myriad spe-
cial interests that have been encouraged to make their own
[predictions].”344 For many environmental scientists, such claims ig-
nore the risk that Bayesian methods will further politicize environ-

339 Ellison, supra note 23, at 1037 (citations omitted).
340 Id. at 1037-38, 1043.

341  See supra Part IL.B.

342 See Schneider, supra note 23, at 17-18.

343 Id.

344 Id. at 19.
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mental science and damage its already often-tenuous credibility.
Bayesian probability estimates appear to them as hopelessly muddled
because Bayesian probability amalgamates objective frequencies (ex-
perimental data) with subjective judgments (prior distributions),
thereby contaminating both with individual biases.3*> Much like the
Mendelian-biometrics dispute discussed in Part II.C, frequentists and
Bayesians talk past each other because they cannot agree on a basic
framework or principles for scientific inference.

The choice between Bayesian and frequentist methods ultimately
turns on one’s view of the merits of a holistic logical approach versus
procedural objectivist methods. Their relative values cannot be
judged in the abstract. Jeffreys used Bayesian methods very success-
fully in his work in meteorology and astrophysics, while Fisher’s fre-
quentist methods greatly improved plant genetics research and the
agricultural sciences.34¢ At bottom, however, environmental science is
not ideally suited to either frequentist or Bayesian methods. The in-
terpretive circuitousness and experimental constraints of frequentist
methods inhibit their effective use by environmental scientists and
policymakers. Similarly, the contentious politics, theoretical uncer-
tainties, and limited data found in environmental policymaking all
suggest that the Bayesian mixing of judgment and data could further
fuel existing disputes by obscuring the solid data and theories that do
exist. Frequentists’ separation of data analysis (i.e., stage-two statisti-
cal inference) from stage-three scientific judgments is often of vital
importance to the credibility of environmental science. Ultimately, a
flexible approach that is responsive to specific contexts is what is
needed.

C. Effectively Integrating Science into Environmental Policymaking

Institutional developments in climate change science policy pro-
vide a potential model that integrates the proposals found in the legal
and scientific debates over the proper role of scientific judgment in
environmental science.34” Drawing on the parallels already noted be-
tween Justice Breyer’s expert model and Bayesian methods and be-
tween Professor Wagner’s procedural scheme and frequentism, this
approach rests on the belief that the legal and scientific debates
should not be treated separately. Instead, statistical methods should
be used in tandem with legal and institutional mechanisms to control

345 Howk, supra note 37, at 161-62; Efron, supra note 326, at 3—4.

346  See supra Part 1.

347 See Mark Schrope, Consensus Science, or Consensus Politics?, 412 NATURE 112,
113-14 (2001).
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how scientific judgment is used in environmental policymaking. The
climate change research community is already, in effect, considering a
strategy that would combine a well developed institutional structure
with a Bayesian approach to calculating climate change predictions.348
Under the Intergovernmental Panel on Climate Change (IPCC), for-
mal procedures exist for drafting scientific reports and attaining con-
sensus among its scientific membership.3*® The use of Bayesian
methods is already being debated within the IPCC, and if embraced
would be particularly noteworthy given the scientific complexity and
political importance of climate change science.350

The IPCC system represents a promising approach to integrating
scientific judgment into environmental policy. This model recognizes
that the function of statistics in science is analogous to the role of
procedures and institutional structures in law—they both operate as
frameworks for ensuring that judgments are transparent and consis-
tent with applicable rules and principles. At the same time, it is clear
that environmental policy is reliant on scientific judgments shaped by
statistical methods, which may enhance or detract from existing legal
measures. Bayesian probabilities, for instance, are less transparent to
public scrutiny because they incorporate subjective judgments and ob-
jective data into a single quantitative estimate. By considering statisti-
cal and legal mechanisms together, lawyers, scientists, and

348  See, e.g., L. Mark Berliner et al., Bayesian Climate Change Assessment, 13 J. CLI-
MATE 3805 (2000); Chris E. Forest et al., Quantifying Uncertainties in Climate System
Properties with the Use of Recent Climate Observations, 295 ScieNce 113 (2002); Giles, supra
note 23, at 476-78; Roger N. Jones, Managing Uncertainty in Climate Change Projec-
tions—Issues for Impact Assessment, 45 CLIMATIC CHANGE 403 (2000); Schneider, supra
note 23, at 17-18; T.M.L. Wigley & S.C.B. Raper, Interpretation of High Projections for
Global-Mean Warming, 293 Science 451 (2001). These references encompass Bayesian
methods that are applied within specific climate models and used as a meta-analytic
method to combine information from diverse models and experiments and to gener-
ate a final quantitative prediction of future climate change. It appears that the latter
meta-analytical method is receiving more attention and opposition than the former.
See Giles, supra note 23, at 476~77; Schneider, supra note 23, at 17-18.

349 See IPCC, supra note 183, at iii-vi; Intergovernmental Panel on Climate
Change, About IPCC, at hup://www.ipcc.ch/about/abouthtm (last visited Nov. 21,
2003). The IPCC draws scientists from universities, the private sector, and nongov-
ernmental organizations. /d. Climate change research has required a careful balanc-
ing of consensus processes and critical debate. See IPCC, supra note 183, at v-vi;
Thomas J. Crowley, Causes of Climate Change Over the Past 1000 Years, 289 SclENCE 270,
271-72 (2000) (discussing competing hypotheses for climate change that scientists
have had to rule out to conclude that climate change is from anthropogenic sources).

350  See Giles, supra note 23, at 476-77; Arnulf Gribler & Nebojsz Nakicenovic,
Letter to the Editor, Identifying Dangers in an Uncertain Climate, 412 NATURE 15 (2001);
Schneider, supra note 23, at 17-18.
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policymakers will gain added flexibility and be in a position to inte-
grate the different mechanisms more effectively.

A complementary strategy, as the IPCC example suggests, could
employ legal procedures and institutional structures to counterbal-
ance expertise based Bayesian methods.?5! Just as in the legal context,
the added procedures would mitigate potential problems with individ-
ual bias. Procedural mechanisms could include justifications of criti-
cal scientific judgments (e.g., how experimental results are weighted),
consideration of a range of hypotheses or prior distributions, or calcu-
lation of Bayesian probabilities under a range of starting assumptions.
Institutional measures might consist of balanced membership require-
ments or consensus processes, much like those associated with the
IPCC. Integrating legal procedures and statistical methods in this
manner provides a general analytic framework, Bayesian or frequen-
tist, for matching legal procedures with critical scientific judgments.
Importantly, this approach differs from Wagner’s judicial review pro-
posal, which is reliant on scientists and judges, because it uses broadly
applicable statistical frameworks to identify important scientific judg-
ments, rather than a case-by-case approach based on separating sci-
ence from policy. Similarly, it has advantages over Breyer’s proposal
insofar as it incorporates procedural mechanisms that mitigate the po-
tential influence of individual bias and political pressures, which
Breyer’s approach gives short shrift.

Such an integrated approach also could match statistical and le-
gal mechanisms based on whether the relevant science is better served
by Bayesian or frequentist methods. Ecological studies, for example,
that are less amenable to frequentist analyses could be conducted us-
ing Bayesian methods and subjected to additional procedural require-
ments, such as requiring scientists to explain the rationale for their
choice of prior distribution. As a general rule, frequentist methods
will be better suited to areas of science where mathematical sophistica-
tion is lower, divisive disciplinary controversies are common, and
large-scale controlled experimental testing dominates. Bayesian
methods will be preferred. where mathematical sophistication is
higher, disciplinary consensus is more attainable, and observational
studies dominate or, as in the case of many ecology studies, statistical
long-run frequencies are elusive. These are clearly generalizations,
though, that must be re-examined in particular contexts.

351 Alternatively, one could combine Breyer’s expert model with frequentist meth-
ods (i.e., preclude Bayesian analysis); however, without some kind of further integra-
tion this would be litle different than the status quo, given the dominance of
frequentist methods in environmental science.
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Taking advantage of the interplay between statistical methods, le-
gal procedures, and institutional mechanisms in shaping expert judg-
ment has the potential to expand the range of options available to
guide scientific judgment in environmental policy. Moreover, by link-
ing law and science in this manner, this approach will promote a
deeper appreciation among lawyers and policymakers of the limits
and strengths of scientific methods and among scientists of the impor-
tant role that legal procedures and institutions play in environmental
law. Both stand to improve how science is used in environmental

policymaking.
CONCLUSION

This Article has analyzed the relationship between scientific judg-
ment and statistics in environmental policy, and has described the
competing Bayesian and frequentist approaches to statistical infer-
ence. As we have seen, expert judgments are important at each stage
of the three-part framework described in the Introduction—experi-
mental quantification, inferences from discrete scientific studies, and
integrated scientific assessments. Stage one shows how substantive sci-
entific uncertainties introduce ambiguities that weaken statistical tests,
and reveals the importance of using a variety of experimental meth-
ods that are independent of the hypothesis being investigated. It also
exposes the difficult balancing that is required to protect the integrity
of science while ensuring transparency and political accountability.
Stage two demonstrates the role of frequentist methods in shaping
scientific judgments and reveals how common misapprehensions
about them have hampered efforts to alleviate the systemic benign-
until-proven-guilty bias of traditional significance tests. It also reveals
that statistical tests are more flexible than their skeptics appreciate
and proposes a remarkably underutilized method—equivalence test-
ing—to address this bias. Equivalence testing ought to be a standard
technique in environmental science, as it already is in medicine under
FDA regulations.

Stage three exposes the limitations of both Bayesian and frequen-
tist methods. Just as Breyer’s and Wagner’s regulatory proposals have
proven incomplete in environmental law, so too are Bayesian and fre-
quentist methods imperfectly suited to environmental science. While
these limitations cannot be completely overcome, they can be miti-
gated by using statistical methods in tandem with legal procedures
and institutional mechanisms. Indeed, many similarities exist be-
tween the legal debate over the appropriate role of expert judgment
in environmental policymaking and the growing dispute among envi-
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ronmental scientists over statistics. Lawyers and scientists have both
adopted procedural and expert based strategies, but where lawyers
rely on institutional structures and administrative procedures, scien-
tists employ Bayesian and frequentist methods, respectively. These
parallels should aid lawyers in grasping how statistics influences envi-
ronmental policy. They also suggest that decisions regarding statisti-
cal methods and legal measures should not be isolated from each
other and that the integrated model proposed in Part IV.C promises
to strike the right balance between science and politics in environ-
mental policymaking.
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